Aris Thobirin
Unknown Affiliation

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)

Hybrid Gradient Descent Grey Wolf Optimizer for Machine Learning Performance Enhancement Puteri Baharie, Sri Rossa Aisyah; Sugiyarto Surono; Aris Thobirin
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 1 (2025): February 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i1.6203

Abstract

Advancements in machine learning have enabled the development of more accurate and efficient health prediction models. This study aims to improve diabetes prediction performance using the Support Vector Machine (SVM) model optimized with the Hybrid Gradient Descent Gray Wolf Optimizer (HGD-GWO) method. SVM is a robust machine learning algorithm for classification and regression. Still, its performance depends significantly on selecting appropriate hyperparameters such as regularization (C), kernel coefficient (γ), and polynomial kernel degree (d). The HGD-GWO method synergizes gradient descent for local optimization and the Gray Wolf Optimizer for global solution exploration. Using the Pima Indians Diabetes dataset, the process includes normalization, hyperparameter optimization, data division, and performance evaluation using accuracy, precision, recall, and F1-score metrics. The optimized SVM achieved an accuracy of 81.17%, with precision, recall, and F1-score values of 75.00%, 57.45%, and 65.06%, respectively, at a data ratio of 80%:20%. These findings highlight the potential of HGD-GWO in enhancing predictive models, particularly for early diabetes detection.