Dian Eka Wijayanti
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Klasifikasi penentuan status gizi balita dengan metode naive bayes Alfiyyah 'Ainul Abdillah; Aris Thobirin; Dian Eka Wijayanti
Jurnal Ilmiah Matematika Vol 11, No 1 (2024)
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jim.v11i1.30139

Abstract

Klasifikasi merupakan pengelompokan untuk memprediksi suatu kelas berdasarkan data dan data-data tersebut memiliki table atau atribut. Salah satu metode dalam klasifikasi adalah naïve bayes. Metode naïve bayes banyak digunakan dalam berbagai bidang penelitian. Pada bidang kesehatan, metode naïve bayes digunakan dalam penelitian kesehatan anak. Salah satu penelitiannya membahas tentang gizi pada bayi dibawah umur lima tahun. Pada penelitian klasifikasi status gizi balita dengan metode naive bayes digunakan untuk melakukan klasifikasi data pada kelas tertentu. Metode naive bayes diterapkan pada penelitian ini untuk mengidentifikasi data balita. Data balita tersebut kemudian dianalisis untuk pembuatan model. Setelah pembuatan model kemudian menentukan model yang terbaik. Selanjutnya, model tersebut digunakan untuk memprediksi data balita di Puskesmas Ponjong I. Hasil penelitian menunjukkan bahwa pembagian data dengan perbandingan 90% data training dan 10% data testing menghasilkan akurasi sebesar 82,14%. Model klasifikasi ini mampu memprediksi status gizi balita dengan lebih baik daripada pembagian data lainnya. Hasil prediksi menunjukkan bahwa terdapat 14 anak dengan status gizi baik, 2 anak dengan gizi kurang, dan 2 anak dengan gizi lebih. Informasi ini memiliki implikasi penting bagi puskesmas, karena puskesmas dapat melakukan perawatan dan pengawasan lebih fokus terhadap kelima balita yang diklasifikasikan memiliki masalah gizi yang buruk.
Klasifikasi penentuan status gizi balita dengan metode naive bayes Alfiyyah 'Ainul Abdillah; Aris Thobirin; Dian Eka Wijayanti
Jurnal Ilmiah Matematika Vol. 11 No. 1 (2024)
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jim.v11i1.30139

Abstract

Klasifikasi merupakan pengelompokan untuk memprediksi suatu kelas berdasarkan data dan data-data tersebut memiliki table atau atribut. Salah satu metode dalam klasifikasi adalah naïve bayes. Metode naïve bayes banyak digunakan dalam berbagai bidang penelitian. Pada bidang kesehatan, metode naïve bayes digunakan dalam penelitian kesehatan anak. Salah satu penelitiannya membahas tentang gizi pada bayi dibawah umur lima tahun. Pada penelitian klasifikasi status gizi balita dengan metode naive bayes digunakan untuk melakukan klasifikasi data pada kelas tertentu. Metode naive bayes diterapkan pada penelitian ini untuk mengidentifikasi data balita. Data balita tersebut kemudian dianalisis untuk pembuatan model. Setelah pembuatan model kemudian menentukan model yang terbaik. Selanjutnya, model tersebut digunakan untuk memprediksi data balita di Puskesmas Ponjong I. Hasil penelitian menunjukkan bahwa pembagian data dengan perbandingan 90% data training dan 10% data testing menghasilkan akurasi sebesar 82,14%. Model klasifikasi ini mampu memprediksi status gizi balita dengan lebih baik daripada pembagian data lainnya. Hasil prediksi menunjukkan bahwa terdapat 14 anak dengan status gizi baik, 2 anak dengan gizi kurang, dan 2 anak dengan gizi lebih. Informasi ini memiliki implikasi penting bagi puskesmas, karena puskesmas dapat melakukan perawatan dan pengawasan lebih fokus terhadap kelima balita yang diklasifikasikan memiliki masalah gizi yang buruk.
Pelabelan Jarak Tak Teratur Titik Pada Graf Persahabatan Lengkap Diperumum Cindy Ainun Majid; Dian Eka Wijayanti; Aris Thobirin; Puguh Wahyu Prasetyo
Limits: Journal of Mathematics and Its Applications Vol. 20 No. 1 (2023): Limits: Journal of Mathematics and Its Applications Volume 20 Nomor 1 Edisi Ma
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Graph labeling is the labeling of graph elements such as vertex, edge and both. distance vertex irregular labeling is a type of labeling resulting from the development of distance magic labeling and (a, b)-distance anti-magic labeling. Let , be a simple graph. The distance vertex irregular labeling of is a vertex labeling so that the weight of each vertex is different. The weight of is calculated based on the sum of vertices label in the set of neighboring vertex , namely Distance vertex irregularity strength of , denoted as d , is the smallest value of the largest label so that has a distance vertex irregular labeling. This study aims to construct a generalized complete friendship graph , determine the labeling function, determine the distance vertex irregularity strength then formulate and prove the theorem resulting from the labeling. The object of this research is to label each vertex on a generalized complete friendship graph. This research method is a literature study obtained through various sources. Based on the research results, it is known that the graph has distance vertex irregular labeling. For an integer m and n, , the labeling function of is and . Distance vertex irregularity strength of generalized complete friendship graph is .