Nadia Dwi Kartika
Bogor Agricultural University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Oil Palm Yield Forecasting Based on Weather Variables Using Artificial Neural Network Nadia Dwi Kartika; I Wayan Astika; Edi Santosa
Indonesian Journal of Electrical Engineering and Computer Science Vol 3, No 3: September 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v3.i3.pp626-633

Abstract

Forecasting of oil palm yield has become a main factor in the management of oil palm industries for proper planning and decision making in order to avoid monthly high cost in harvesting. Predicting future value of oil palm yield with minimum error becomes an important issue recently. A lot of factors determine the productivity of oil palm and weather variables play an important role that affect plant growth and development that may reduce yield significantly. This research used secondary data of yield and weather variables available in company administration. It proposed feed forward neural network with back propagation learning algorithm to build a monthly yield forecasting model. The optimization procedure of ANN architecture obtained the best using 60 neurons in input layer, five hidden layers and one neuron in the output layer. Training data were from January 2005 to June 2008 while testing data were from July 2008 to December 2009. ANN architecture using five hidden layers gave the best accuracy with MAE 0.5346 and MSE 0.4707 while the lowest accuracy occurred by using two hidden layers with MAE 1.5843and MSE 4.087.