Adeleke Abdullahi
Universiti Tun Hussein Onn Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Towards IR4.0 implementation in e-manufacturing: artificial intelligence application in steel plate fault detection Adeleke Abdullahi; Noor Azah Samsudin; Mohd Rasidi Ibrahim; Muhammad Syariff Aripin; Shamsul Kamal Ahmad Khalid; Zulaiha Ali Othman
Indonesian Journal of Electrical Engineering and Computer Science Vol 20, No 1: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v20.i1.pp430-436

Abstract

Fault detection is the task of discovering patterns of a certain fault in industrial manufacturing. Early detection of fault is an essential task in industrial manufacturing. Traditionally, faults are detected by human experts. However, this method suffers from cost and time. In this era of Industrial revolution IR 4.0, machine learning (ML) methods and techniques are developed to solve fault detection problem. In this study, three standard ML models: LR, NB, and SVM are developed for the classification problem. The experimental dataset used in this study consists of steel plates faults. The dataset is retrieved from UCI machine learning repository. Three standard evaluation methods: accuracy, precision, and recall are validated on the classification models. Logistic regression (LR) model achieved the highest accuracy and precision scores of 94.5% and 0.756 respectively. In addition, the SVM model had the highest recall score of 0.317. The results showed the significant impact of AI/ML approach in steel plates fault diagnosis problem. 
Comparative Analysis for Topic Classification in Juz Al-Baqarah Mohamad Izzuddin Rahman; Noor Azah Samsudin; Aida Mustapha; Adeleke Abdullahi
Indonesian Journal of Electrical Engineering and Computer Science Vol 12, No 1: October 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v12.i1.pp406-411

Abstract

In Islam, Quran is the holy book that was revealed to the Prophet Muhammad. It functions as complete code of life for the Muslims. Remarks from Allah which contains more than 77,000 words that was passed down through Prophet Muhammad to the mankind for 23 years started in 610 ce. The Quran was divided into 114 chapters.  Arabic language is the original text. The need for the Muslims across the world to find the meaning to understand the content in the Quran is necessary. Nevertheless, understanding the Quran is an interest for the Muslims as well as the attention of millions of people from the faiths.  Following the generation, lots of content that related to the Quran has been broadcast by Muslims scholars in the way of the tafsirs, translation and the book of hadiths. Problem has happened at current is most Muslim in Malaysia do not understand sentences in the Quran due to language barrier. The purpose of this research is classified topic in each verses of the Quran sentence based on its specific theme. It involves the objective of text mining which are based on linguistic information and domain. The usage of corpus helps to perform various data mining tasks including information extraction, text categorization, the relationship of concepts, association discovery, the evaluation of pattern and assessed. This research project is aiming to create computing environment that enable us use to text mining the Quran. The classification experiment is using the Support Vector Machine to find themes in Juz’ Baqarah. The SVM performance is then compared against other classification algorithms such as Naive Bayes, J48 Decision Tree and K-Nearest Neighbours. This research project aims at creating an enabling computational environment for text mining the Qur’an and to facilitate users to understand every verse in Juz’ Baqarah.