Aida Mustapha
Universiti Tun Hussein Onn Malaysia

Published : 29 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 29 Documents
Search

Predicting fatalities among shark attacks: comparison of classifiers Lim Mei Shi; Aida Mustapha; Yana Mazwin Mohmad Hassim
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (367.43 KB) | DOI: 10.11591/ijai.v8.i4.pp360-366

Abstract

This paper presents the comparisons of different classifiers on predicting Shark attack fatalities. In this study, we are comparing two classifiers which are Support vector machines (SVMs) and Bayes Point Machines (BPMs) on Shark attacks dataset. The comparison of the classifiers were based on the accuracy, recall, precision and F1-score as the performance measurement. The results obtained from this study showed that BPMs predicted the fatality of shack attack victim experiment with higher accuracy and precision than the SVMs because BPMs have “average” identifier which can minimize the probabilistic error measure. From this experiment, it is concluded that BPMs are more suitable in predicting fatality of shark attack victim as BPMs is an improvement of SVMs.
Machine learning approach for flood risks prediction Nazim Razali; Shuhaida Ismail; Aida Mustapha
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 9, No 1: March 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (427.364 KB) | DOI: 10.11591/ijai.v9.i1.pp73-80

Abstract

Flood is one of main natural disaster that happens all around the globe caused law of nature. It has caused vast destruction of huge amount of properties, livestock and even loss of life. Therefore, the needs to develop an accurate and efficient flood risk prediction as an early warning system is highly essential. This study aims to develop a predictive modelling follow Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology by using Bayesian network (BN) and other Machine Learning (ML) techniques such as Decision Tree (DT), k-Nearest Neighbours (kNN) and Support Vector Machine (SVM) for flood risks prediction in Kuala Krai, Kelantan, Malaysia. The data is sourced from 5-year period between 2012 until 2016 consisting 1,827 observations. The performance of each models were compared in terms of accuracy, precision, recall and f-measure. The results showed that DT with SMOTE method performed the best compared to others by achieving 99.92% accuracy. Also, SMOTE method is found highly effective in dealing with imbalance dataset. Thus, it is hoped that the finding of this research may assist the non-government or government organization to take preventive action on flood phenomenon that commonly occurs in Malaysia due to the wet climate.
Comparative analysis of classification algorithms for chronic kidney disease diagnosis Zainuri Saringat; Aida Mustapha; R. D. Rohmat Saedudin; Noor Azah Samsudin
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (349.3 KB) | DOI: 10.11591/eei.v8i4.1621

Abstract

Chronic Kidney Disease (CKD) is one of the leading cause of death contributed by other illnesses such as diabetes, hypertension, lupus, anemia or weak bones that lead to bone fractures. Early prediction of CKD is important in order to contain the disesase. However, instead of predicting the severity of CKD, the objective of this paper is to predict the diagnosis of CKD based on the symptoms or attributes observed in a particular case, whether the stage is acute or chronic. To achieve this, a classification model is proposed to label stage of severity for kidney diseases patients. The experiments then investigated the performance of the proposed classification model based on eight supervised classification algorithms, which are ZeroR, Rule Induction, Support Vector Machine, Naïve Bayes, Decision Tree, Decision Stump, k-Nearest Neighbour, and Classification via Regression. The performance of the all classifiers is evaluated based on accuracy, precision, and recall. The results showed that the regression classifier perform best in the kidney diagnostic procedure.
Comparative analysis on bayesian classification for breast cancer problem Wan Nor Liyana Wan Hassan Ibeni; Mohd Zaki Mohd Salikon; Aida Mustapha; Saiful Adli Daud; Mohd Najib Mohd Salleh
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (585.991 KB) | DOI: 10.11591/eei.v8i4.1628

Abstract

The problem of imbalanced class distribution or small datasets is quite frequent in certain fields especially in medical domain. However, the classical Naive Bayes approach in dealing with uncertainties within medical datasets face with the difficulties in selecting prior distributions, whereby parameter estimation such as the maximum likelihood estimation (MLE) and maximum a posteriori (MAP) often hurt the accuracy of predictions. This paper presents the full Bayesian approach to assess the predictive distribution of all classes using three classifiers; naïve bayes (NB), bayesian networks (BN), and tree augmented naïve bayes (TAN) with three datasets; Breast cancer, breast cancer wisconsin, and breast tissue dataset. Next, the prediction accuracies of bayesian approaches are also compared with three standard machine learning algorithms from the literature; K-nearest neighbor (K-NN), support vector machine (SVM), and decision tree (DT). The results showed that the best performance was the bayesian networks (BN) algorithm with accuracy of 97.281%. The results are hoped to provide as base comparison for further research on breast cancer detection. All experiments are conducted in WEKA data mining tool.
Comparative analysis on bayesian classification for breast cancer problem Wan Nor Liyana Wan Hassan Ibeni; Mohd Zaki Mohd Salikon; Aida Mustapha; Saiful Adli Daud; Mohd Najib Mohd Salleh
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (585.991 KB) | DOI: 10.11591/eei.v8i4.1628

Abstract

The problem of imbalanced class distribution or small datasets is quite frequent in certain fields especially in medical domain. However, the classical Naive Bayes approach in dealing with uncertainties within medical datasets face with the difficulties in selecting prior distributions, whereby parameter estimation such as the maximum likelihood estimation (MLE) and maximum a posteriori (MAP) often hurt the accuracy of predictions. This paper presents the full Bayesian approach to assess the predictive distribution of all classes using three classifiers; naïve bayes (NB), bayesian networks (BN), and tree augmented naïve bayes (TAN) with three datasets; Breast cancer, breast cancer wisconsin, and breast tissue dataset. Next, the prediction accuracies of bayesian approaches are also compared with three standard machine learning algorithms from the literature; K-nearest neighbor (K-NN), support vector machine (SVM), and decision tree (DT). The results showed that the best performance was the bayesian networks (BN) algorithm with accuracy of 97.281%. The results are hoped to provide as base comparison for further research on breast cancer detection. All experiments are conducted in WEKA data mining tool.
Comparative analysis of classification algorithms for chronic kidney disease diagnosis Zainuri Saringat; Aida Mustapha; R. D. Rohmat Saedudin; Noor Azah Samsudin
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (349.3 KB) | DOI: 10.11591/eei.v8i4.1621

Abstract

Chronic Kidney Disease (CKD) is one of the leading cause of death contributed by other illnesses such as diabetes, hypertension, lupus, anemia or weak bones that lead to bone fractures. Early prediction of CKD is important in order to contain the disesase. However, instead of predicting the severity of CKD, the objective of this paper is to predict the diagnosis of CKD based on the symptoms or attributes observed in a particular case, whether the stage is acute or chronic. To achieve this, a classification model is proposed to label stage of severity for kidney diseases patients. The experiments then investigated the performance of the proposed classification model based on eight supervised classification algorithms, which are ZeroR, Rule Induction, Support Vector Machine, Naïve Bayes, Decision Tree, Decision Stump, k-Nearest Neighbour, and Classification via Regression. The performance of the all classifiers is evaluated based on accuracy, precision, and recall. The results showed that the regression classifier perform best in the kidney diagnostic procedure.
A regression approach for prediction of Youtube views Lau Tian Rui; Zehan Afizah Afif; R. D. Rohmat Saedudin; Aida Mustapha; Nazim Razali
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (447.771 KB) | DOI: 10.11591/eei.v8i4.1630

Abstract

YouTube has grown to be the number one video streaming platform on Internet and home to millions of content creator around the globe. Predicting the potential amount of YouTube views has proven to be extremely important for helping content creator to understand what type of videos the audience prefers to watch. In this paper, we will be introducing two types of regression models for predicting the total number of views a YouTube video can get based on the statistic that are available to our disposal. The dataset we will be using are released by YouTube to the public. The accuracy of both models are then compared by evaluating the mean absolute error and relative absolute error taken from the result of our experiment. The results showed that Ordinary Least Square method is more capable as compared to the Online Gradient Descent Method in providing a more accurate output because the algorithm allows us to find a gradient that is close as possible to the dependent variables despite having an only above average prediction.
Comparative analysis on bayesian classification for breast cancer problem Wan Nor Liyana Wan Hassan Ibeni; Mohd Zaki Mohd Salikon; Aida Mustapha; Saiful Adli Daud; Mohd Najib Mohd Salleh
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (585.991 KB) | DOI: 10.11591/eei.v8i4.1628

Abstract

The problem of imbalanced class distribution or small datasets is quite frequent in certain fields especially in medical domain. However, the classical Naive Bayes approach in dealing with uncertainties within medical datasets face with the difficulties in selecting prior distributions, whereby parameter estimation such as the maximum likelihood estimation (MLE) and maximum a posteriori (MAP) often hurt the accuracy of predictions. This paper presents the full Bayesian approach to assess the predictive distribution of all classes using three classifiers; naïve bayes (NB), bayesian networks (BN), and tree augmented naïve bayes (TAN) with three datasets; Breast cancer, breast cancer wisconsin, and breast tissue dataset. Next, the prediction accuracies of bayesian approaches are also compared with three standard machine learning algorithms from the literature; K-nearest neighbor (K-NN), support vector machine (SVM), and decision tree (DT). The results showed that the best performance was the bayesian networks (BN) algorithm with accuracy of 97.281%. The results are hoped to provide as base comparison for further research on breast cancer detection. All experiments are conducted in WEKA data mining tool.
Comparative analysis of classification algorithms for chronic kidney disease diagnosis Zainuri Saringat; Aida Mustapha; R. D. Rohmat Saedudin; Noor Azah Samsudin
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (349.3 KB) | DOI: 10.11591/eei.v8i4.1621

Abstract

Chronic Kidney Disease (CKD) is one of the leading cause of death contributed by other illnesses such as diabetes, hypertension, lupus, anemia or weak bones that lead to bone fractures. Early prediction of CKD is important in order to contain the disesase. However, instead of predicting the severity of CKD, the objective of this paper is to predict the diagnosis of CKD based on the symptoms or attributes observed in a particular case, whether the stage is acute or chronic. To achieve this, a classification model is proposed to label stage of severity for kidney diseases patients. The experiments then investigated the performance of the proposed classification model based on eight supervised classification algorithms, which are ZeroR, Rule Induction, Support Vector Machine, Naïve Bayes, Decision Tree, Decision Stump, k-Nearest Neighbour, and Classification via Regression. The performance of the all classifiers is evaluated based on accuracy, precision, and recall. The results showed that the regression classifier perform best in the kidney diagnostic procedure.
A regression approach for prediction of Youtube views Lau Tian Rui; Zehan Afizah Afif; R. D. Rohmat Saedudin; Aida Mustapha; Nazim Razali
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (447.771 KB) | DOI: 10.11591/eei.v8i4.1630

Abstract

YouTube has grown to be the number one video streaming platform on Internet and home to millions of content creator around the globe. Predicting the potential amount of YouTube views has proven to be extremely important for helping content creator to understand what type of videos the audience prefers to watch. In this paper, we will be introducing two types of regression models for predicting the total number of views a YouTube video can get based on the statistic that are available to our disposal. The dataset we will be using are released by YouTube to the public. The accuracy of both models are then compared by evaluating the mean absolute error and relative absolute error taken from the result of our experiment. The results showed that Ordinary Least Square method is more capable as compared to the Online Gradient Descent Method in providing a more accurate output because the algorithm allows us to find a gradient that is close as possible to the dependent variables despite having an only above average prediction.