Hung Nguyen
Ho Chi Minh City University of Technology

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Algorithmic TCAM on FPGA with data collision approach Nguyen Trinh; Anh Le Thi Kim; Hung Nguyen; Linh Tran
Indonesian Journal of Electrical Engineering and Computer Science Vol 22, No 1: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v22.i1.pp89-96

Abstract

Content addressable memory (CAM) and ternary content addressable memory (TCAM) are specialized high-speed memories for data searching. CAM and TCAM have many applications in network routing, packet forwarding and Internet data centers. These types of memories have drawbacks on power dissipation and area. As field-programmable gate array (FPGA) is recently being used for network acceleration applications, the demand to integrate TCAM and CAM on FPGA is increasing. Because most FPGAs do not support native TCAM and CAM hardware, methods of implementing algorithmic TCAM using FPGA resources have been proposed through recent years. Algorithmic TCAM on FPGA have the advantages of FPGAs low power consumption and high intergration scalability. This paper proposes a scaleable algorithmic TCAM design on FPGA. The design uses memory blocks to negate power dissipation issue and data collision to save area. The paper also presents a design of a 256 x 104-bit algorithmic TCAM on Intel FPGA Cyclone V, evaluates the performance and application ability of the design on large scale and in future developments.