Nurulaqilla Khamis
Universiti Teknologi Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimization of RF signal detection and alert system for restricted area Ili Najaa Aimi Mohd Nordin; Najla Aiman Nazari; Muhammad Rusydi Muhammad Razif; Nurulaqilla Khamis; Noraishikin Zulkarnain; Farkhana Muchtar; Nor Aira Zambri
Indonesian Journal of Electrical Engineering and Computer Science Vol 16, No 1: October 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v16.i1.pp325-332

Abstract

This paper presents study on optimizing RF signal detection and alert system for restricted area. Nowadays, mobile phone utilization is very common among youngsters. Despite of being very useful for educational purpose, it turns into a noteworthy issue while being smuggled into restricted area, such as examination hall and used as a cheating tool. To overcome this problem, an advancement on the detection and alert system of active mobile phone was proposed by implementing RF signal detection system optimization using multi-band dipole antenna and alert system utilizing LED and camera. The system demonstrated higher sensitivity to 3G signal followed by GSM and Wi-Fi with the decrease in voltage value across the LED when distinguishing 3G, GSM and Wi-Fi signal with the estimation of 2.316 V, 1.162 V and 1.054 V respectively. The alert system was improved by activating LED and camera instead of buzzer in displaying the region of the active mobile phone. The camera was able to effectively capture the conceivable cheating area when active mobile phone is present. The images of the potential cheating region can be recovered from the computer. This framework can assist the invigilators with being cautioned to the potential regions of cheating using mobile phone.
IMU sensor-based data glove for finger joint measurement Muhammad Ajwad Wa’ie Hazman; Ili Najaa Aimi Mohd Nordin; Faridah Hanim Mohd Noh; Nurulaqilla Khamis; M. R. M. Razif; Ahmad Athif Faudzi; Asyikin Sasha Mohd Hanif
Indonesian Journal of Electrical Engineering and Computer Science Vol 20, No 1: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v20.i1.pp82-88

Abstract

The methods used to quantify finger range of motion significantly influence how hand disability is reported. To date, the accuracy of sensors being utilized in data gloves from the literature has been ascertained yet need further analysis. This paper presents an inertial measurement unit sensor-based data glove for finger joint measurement developed for collecting a range of motion data of distal interphalangeal, proximal interphalangeal and metacarpophalangeal finger joints of an index finger. In this study, three inertial measurement sensors, MPU-6050 and two flexible bend sensors which are capable to detect angle displacement were attached to the distal interphalangeal, proximal interphalangeal and metacarpophalangeal finger joint points on the glove. The data taken from inertial measurement unit sensors and flexible bend sensors were acquired using Arduino and MATLAB software interface. The data obtained were compared with the reference data measured from goniometer to allow for accurate comparative measurement. The percentage of error resulted from MPU-6050 sensor unit were ranged from 0.81 % to 5.41 % were very low which indicates high accuracy when compared with the measurements obtained using goniometer. On the other hand, flexible bend sensor shows low accuracy (11.11 % to 19.35 % error). In conclusion, the inertial measurement unit sensor-based data glove using MPU-6050 sensors can be a reliable solution for tracking the progress of finger rehabilitation exercises. In order to motivate patients to adhere to the therapy exercises, interactive rehabilitation game will be developed in the future incorporating  MPU-6050 sensors on all five fingers.