Vijayakumar. V
VIT University Chennai

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Active and reactive power management of grid connected photovoltaic system Ameerul A. J. Jeman; Naeem M. S. Hannoon; Nabil Hidayat; Mohamed.M.H. Adam; Ismail Musirin; Vijayakumar. V
Indonesian Journal of Electrical Engineering and Computer Science Vol 13, No 3: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v13.i3.pp1324-1331

Abstract

Voltage-source converter (VSC) topology is widely used for grid interfacing of distributed generation (DG) systems such as the photovoltaic system (PV). Since the operation of the VSC is essential to ensure quality of active and reactive power injected to the grid, a control approach is needed to deal with the uncertainties in the grid such as faults. This paper presents a non-linear controller design for a three-phase voltage source converter (VSC). The dynamic variables adopted for the VSC are the instantaneous real and reactive power components. The control approach that interface the VSC between the PV system and the grid are subjected to the current-voltage based. PV system injects active power to the grid and local load while utility grid monitors the power compensation of load reactive power. The proposed non-linear control strategy is implemented for the VSC to ensure fast error tracking and finite convergence time. The adaptive nature of the proposed non-linear control provides more robustness, less sluggish fault recovery compared to conventional PI control. The comprehensive numerical model is demonstrated in MATLAB script environment with power system disturbances such as faults in the grid. The simulation of proposed system is being carried out in MATLAB/SIMULINK environment to validate the control scheme. The proposed control system regulates the VSC ac side real and reactive power component and the dc side voltage.
Small signal fault analysis for renewable energy (Wind) power system distributed generation by using MATLAB software (Simulink) Ameerul A. J. Jeman; Naeem M. S. Hannoon; Nabil Hidayat; Mohamed.M.H. Adam; Ismail Musirin; Vijayakumar. V
Indonesian Journal of Electrical Engineering and Computer Science Vol 13, No 3: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v13.i3.pp1337-1344

Abstract

In distribution system, wind power plants are becoming popular renewable energy sources. It employs Doubly Fed Induction Generator (DFIG) to generate power based on wind conversion. Short and long transmission lines, presence of faults and presence of Static Synchronous Compensator (STATCOM) are highlighted issues in this paper. Basically, this research develops investigations on some electrical variables such as voltage and current to control them. Distribution Static Synchronous Compensator (DSTATCOM) is proposed in this paper. Wind farm acts as a source while DSTATCOM is connected to the distribution system with a DFIG based wind farm. The controller proposed is DSTATCOM is modeled and simulated in MATLAB/SIMULINK and the results are given. A microgrid based small signal analysis is performed in the laboratory using MATLAB and different comparisons are made and simulation case studies are presented and validated.
Fault analysis for renewable energy power system in micro-grid distributed generation Ameerul A. J. Jeman; Naeem M. S. Hannoon; Nabil Hidayat; Mohamed.M.H. Adam; Ismail Musirin; Vijayakumar. V
Indonesian Journal of Electrical Engineering and Computer Science Vol 13, No 3: March 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v13.i3.pp1117-1123

Abstract

In distribution system, wind power plants are becoming popular renewable energy sources. It employs Doubly Fed Induction Generator (DFIG) to generate power based on wind conversion. Short and long transmission lines, presence of faults and presence of Static Synchronous Compensator (STATCOM) are highlighted issues in this paper. Basically, this research develops investigations on some electrical variables such as voltage and current to control them. Distribution Static Synchronous Compensator (DSTATCOM) is proposed in this paper. Wind farm acts as a source while DSTATCOM is connected to the distribution system with a DFIG based wind farm. The controller proposed is DSTATCOM is modeled and simulated in MATLAB/SIMULINK and the results are given. A microgrid based small signal analysis is performed in the laboratory using MATLAB and different comparisons are made and simulation case studies are presented and validated.