Claim Missing Document
Check
Articles

Found 3 Documents
Search

The changes of soil physical and chemical properties of Andisols as affected by drying and rewetting processes Rahayu, A; Utami, S R; Prijono, S
Journal of Degraded and Mining Lands Management Vol. 3 No. 1 (2015)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2015.031.439

Abstract

Soils from a toposequence in northern slope of Mt. Kawi, Malang were sampled to study the effect of amorphous content on the irreversible drying properties of the soils. Water, clay, organic-C, and available P contents were measured at field capacity (KL), after air-drying for 2 days (K2) , air-drying for 4 days (K4), oven-drying at 40 °C for 1 day (Ko), as well as after rewetting K2 (KL2); K4 (KL4), and Ko (KLo). The results showed that water, clay, organic-C, and available P contents changed after drying and rewetting processes. Drying process decreased clay content but increased available P content. Clay and water content of the rewetted samples, especially after oven-drying (KLo) were lower than at initial field capacity (KL), as indication of irreversible properties. In contrast, available P and organic-C content were higher after drying-rewetting processes. Variation of water, clay, organic-C, and available P contents after drying-rewetting processes were significantly affected by respected properties at initial field capacity. These properties tended to change in accordance to Alo+½Feo content. The effect of Alo+½Feo content, however was statisticaly detected only on the water content at KLo (rewetted after oven-dried) and on organic C content at KL2 and KL4 (rewetted after air-dried for 2 and 4 days).  
The effect of motor vehicle emission towards lead (Pb) content of rice field soil with different clay content Wati, C C; Prijono, S; Kusuma, Z
Journal of Degraded and Mining Lands Management Vol. 3 No. 1 (2015)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2015.031.453

Abstract

Motor vehicle gas emission contains lead (Pb) which is a hazardous and toxic substance. Agricultural land, especially rice field, which is located nearby roads passed by many motor vehicle, are susceptible to the accumulation of Pb. If Pb is permeated by plants cultivated in the rice field, it will be very hazardous for humans as they are the final consumers. Hence, it is essential to identify Pb content of rice-field soil initiated by motor vehicle gas emission. This study was aimed to identify the effects of motor vehicle density, the distance between rice-field and road, and the clay content of soil towards Pb content of soils in Blitar and Ngawi Regencies of East Java. The method used for the study was survey method managed by using three-factor nested design with three replicates. The results of this study showed that motor vehicle density and the distance of rice field to road provide significant affected the total of Pb content of soil. However, the dissemination pattern of Pb in the soil was irregular due to the factors of climate and environment. Before Pb reached soil surface, Pb was spread out in the air due to the effect of temperature, wind velocity, vehicle velocity, size of vehicle, and road density. Consequently, the location with low motor vehicle density and positioned faraway to the road had higher total rate of Pb than the location with high motor vehicle density and positioned nearby the road. Clay content affected the total rate of Pb content as much as 37%, every 1% increase of clay content increased the total rate of Pb as much as 0.08 mg/kg.
Effects of hedgerow systems on soil moisture and unsaturated hydraulics conductivity measured by the Libardi method Prijono, S; Laksmana, M T S; Suprayogo, D
Journal of Degraded and Mining Lands Management Vol. 3 No. 2 (2016)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2016.032.491

Abstract

The hedgerow systems are the agroforestry practices suggesting any positive impacts and negative impacts on soil characteristics. This study evaluated the effects of hedgerows on the unsaturated hydraulic conductivity of soil with the Libardi method approach. This study was conducted in North Lampung for 3 months on the hedgerow plots of  Peltophorum dassyrachis (P), Gliricidia sepium (G), and without hedgerow plot (K), with four replications. Each plot was watered as much as 150 liters of water until saturated, then the soil surface were covered with the plastic film. Observation of soil moisture content was done to a depth of 70 cm by the 10 cm intervals. Soil moisture content was measured using the Neutron probe that was calibrated to get the value of volumetric water content. Unsaturated hydraulic conductivity of soil was calculated by using the Libardi Equation. Data were tested using the analysis of variance, the least significant different test (LSD), Duncan Multiple Range Test (DMRT), correlation and regression analysis. The results showed that the hedgerow significantly affected the soil moisture content and unsaturated hydraulic conductivity. Soil moisture content on the hedgerow plots was lower than the control plots. The value of unsaturated hydraulic conductivity in the hedgerow plots was higher than the control plots. Different types of hedgerows affected the soil moisture content and unsaturated hydraulic conductivity. The positive correlation was found between the volumetric soil moisture content and the unsaturated hydraulic conductivity of soil.