Claim Missing Document
Check
Articles

Found 4 Documents
Search

Pelatihan Microsoft Word bagi siswa-siswi PKL di YPAIS Foundation Jupron, Jupron; Permadi, Yuda; Sarman, Sarman; Sutrisno, Sutrisno
Jurnal Altifani Penelitian dan Pengabdian kepada Masyarakat Vol. 5 No. 4 (2025): Juli 2025 - Jurnal Altifani Penelitian dan Pengabdian kepada Masyarakat
Publisher : Indonesian Scientific Journal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59395/1k2v6k04

Abstract

Keterampilan penggunaan perangkat lunak pengolah kata seperti Microsoft Word merupakan kebutuhan dasar yang sangat penting dalam dunia kerja modern. Namun, hasil survei awal terhadap 30 siswa peserta Praktik Kerja Lapangan (PKL) di YPAIS Foundation menunjukkan bahwa lebih dari 70% responden belum menguasai fungsi dasar aplikasi tersebut. Kondisi ini menjadi hambatan dalam penyusunan laporan PKL dan dokumen administratif lainnya. Kegiatan pengabdian kepada masyarakat ini bertujuan untuk meningkatkan keterampilan digital dasar peserta melalui pelatihan Microsoft Word secara terstruktur, dimulai dari materi dasar hingga tingkat menengah, dengan pendekatan ceramah, demonstrasi, dan praktik langsung yang didampingi fasilitator. Evaluasi dilakukan menggunakan pre-test dan post-test, observasi praktik, serta angket dan wawancara. Hasil pelatihan menunjukkan peningkatan signifikan pada pemahaman peserta terhadap fitur-fitur penting Microsoft Word seperti pengaturan paragraf, pembuatan tabel, penomoran halaman, dan penyusunan dokumen resmi. Rata-rata peningkatan nilai post-test mencapai 40% dibandingkan pre-test. Selain peningkatan kognitif, peserta juga menunjukkan perubahan sikap positif, seperti meningkatnya kepercayaan diri dan kesadaran akan pentingnya literasi digital. Meskipun terdapat kendala seperti keterbatasan fasilitas dan variasi kemampuan awal peserta, pelatihan ini terbukti efektif dan relevan dengan kebutuhan mereka. Kegiatan ini berpotensi untuk dikembangkan lebih lanjut melalui pelatihan lanjutan dan pengembangan bahan ajar digital guna memperluas dampaknya dalam meningkatkan kesiapan siswa menghadapi dunia kerja berbasis teknologi.
Jumlah Kepala Sekolah Dan Guru Menurut Kelompok Umur Provinsi Riau, D.I Yogyakarta, Klaimantan Utara Dan Gorontalo Permadi, Yuda; Wibisono, Gunawan; Chafizh Hisbulloh, Dika; Cahya Anggarakasih, Sabitya; Andrian, Jumigih; Rosyani, Perani
BINER : Jurnal Ilmu Komputer, Teknik dan Multimedia Vol. 2 No. 4 (2024): BINER : Jurnal Ilmu Komputer, Teknik dan Multimedia
Publisher : CV. Shofanah Media Berkah

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study discusses the number of principals and teachers by age group in the provinces of Riau, Yogyakarta, North Kulimantan, and Gorontoro in 2023/2024. The method used is a literature review with data analysis from various journal sources. The purpose of this study is to determine the age distribution of principals and teachers and their influence on the quality of education. Proposed solutions include increasing training for young teachers and mentoring programs for experienced school leaders. The results show an imbalance in age distribution that has an impact on the effectiveness of education.
Klasifikasi Batu Permata Berbasis Citra Menggunakan Convolutional Neural Network Rosyani, Perani; Hariansyah, Oke; Permadi, Yuda; Rosdiana, Muhamad; Nanang, Nanang
Journal of Information System Research (JOSH) Vol 7 No 2 (2026): January 2026
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josh.v7i2.9101

Abstract

Manual gemstone identification still faces several limitations, such as subjective assessment and strong dependence on expert experience, which may lead to misclassification, particularly for gemstones with similar visual characteristics. This study aims to apply a Convolutional Neural Network (CNN) for automatic visual-based gemstone image classification using a limited dataset. The dataset consists of three gemstone classes, namely Alexandrite, Almandine, and Amazonite, with a balanced class distribution. Image preprocessing includes image resizing, pixel value normalization, and data augmentation to increase data variability. The proposed CNN model is a custom architecture composed of three convolutional layers with ReLU activation, followed by max pooling, a fully connected layer with dropout, and a Softmax output layer. Model performance is evaluated using a confusion matrix and classification metrics, including accuracy, precision, recall, and F1-score. Experimental results show that the CNN model achieves a testing accuracy of 93.33% on the limited test dataset with relatively balanced performance across classes. However, analysis of the training and validation curves indicates the presence of overfitting, suggesting that the model’s generalization capability to unseen data remains limited. These findings highlight that the achieved accuracy is conditional on the specific and constrained dataset used. Therefore, future work is recommended to expand dataset size and diversity, apply more comprehensive data augmentation strategies, and explore transfer learning approaches to improve model stability and generalization performance.
Penerapan Integrasi Metode AHP dan Entropy dalam Pengambilan Keputusan Seleksi Beasiswa Perguruan Tinggi Permadi, Yuda; Saprudin, Saprudin; Rosyani, Perani
Bulletin of Computer Science Research Vol. 6 No. 1 (2025): December 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v6i1.936

Abstract

Multi-criteria decision making (MCDM) is a complex process involving multiple criteria with different levels of importance. One of the most critical aspects of MCDM is the determination of criterion weights, as inappropriate weighting may lead to biased and unrepresentative decision outcomes. This study aims to apply an integrated weighting approach using the Analytic Hierarchy Process (AHP) and the Entropy method in multi-criteria decision making. The research employs a case study of scholarship recipient selection at University X, using decision data consisting of five student alternatives and four evaluation criteria, namely Grade Point Average (GPA), parents’ income, organizational activities, and essay assessment. The AHP method is used to derive subjective weights based on decision-makers’ preferences, while the Entropy method is applied to obtain objective weights based on data variability. Weight integration is performed using the arithmetic mean approach to produce final weights that balance subjective judgment and objective information. The results indicate that the integrated AHP–Entropy weights produce a more balanced distribution compared to single-method weighting. Weight stability is evaluated through comparative analysis of weight variations across methods, demonstrating that the integration reduces subjective dominance and enhances the representation of objective data characteristics. Therefore, the integration of AHP and Entropy is proven to be an effective weighting approach for multi-criteria decision making, particularly in the context of scholarship selection in higher education institutions.