Novri Anggraeni, Novri
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Super $(a,d)$-$mathcal{H}$-Antimagic Total Covering of Amalgamation Graph $K_4$ and $W_4$ Anggraeni, Novri; Dafik, Dafik
Prosiding Seminar Matematika dan Pendidikan Matematik Vol 1, No 1 (2014): Prosiding Seminar Nasional Matematika 2014
Publisher : Prosiding Seminar Matematika dan Pendidikan Matematik

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

A graph $G(V,E)$ has a $mathcal{H}$-covering if every edge in $E$ belongs to a subgraph of $G$ isomorphic to $mathcal{H}$. An $(a,d)$-$mathcal{H}$-antimagic total covering is a total labeling $lambda$ from $V(G)cup E(G)$ onto the integers ${1,2,3,...,|V(G)cup E(G)|}$ with the property that, for every subgraph $A$ of $G$ isomorphic to $mathcal{H}$ the $sum{A}=sum_{vin{V(A)}}lambda{(v)}+sum_{ein{E(A)}}lambda{(e)}$ forms an arithmetic sequence. A graph that admits such a labeling is called an $(a,d)$-$mathcal{H}$-antimagic total covering. In addition, if ${lambda{(v)}}_{vin{V}}={1,...,|V|}$, then the graph is called $mathcal{H}$-super antimagic graph. In this paper we study of amalgamasi graph $K_4$ and $W_4$.
Super $(a,d)$-$\mathcal{H}$-Antimagic Total Covering of Amalgamation Graph $K_4$ and $W_4$ Anggraeni, Novri; Dafik, Dafik
Prosiding Seminar Matematika dan Pendidikan Matematik Vol 1 No 5 (2014): Prosiding Seminar Nasional Matematika 2014
Publisher : Prosiding Seminar Matematika dan Pendidikan Matematik

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

A graph $G(V,E)$ has a $\mathcal{H}$-covering if every edge in $E$ belongs to a subgraph of $G$ isomorphic to $\mathcal{H}$. An $(a,d)$-$\mathcal{H}$-antimagic total covering is a total labeling $\lambda$ from $V(G)\cup E(G)$ onto the integers $\{1,2,3,...,|V(G)\cup E(G)|\}$ with the property that, for every subgraph $A$ of $G$ isomorphic to $\mathcal{H}$ the $\sum{A}=\sum_{v\in{V(A)}}\lambda{(v)}+\sum_{e\in{E(A)}}\lambda{(e)}$ forms an arithmetic sequence. A graph that admits such a labeling is called an $(a,d)$-$\mathcal{H}$-antimagic total covering. In addition, if $\{\lambda{(v)}\}_{v\in{V}}=\{1,...,|V|\}$, then the graph is called $\mathcal{H}$-super antimagic graph. In this paper we study of amalgamasi graph $K_4$ and $W_4$.