Prosiding Seminar Matematika dan Pendidikan Matematik
Vol 1 No 5 (2014): Prosiding Seminar Nasional Matematika 2014

Super $(a,d)$-$\mathcal{H}$-Antimagic Total Covering of Amalgamation Graph $K_4$ and $W_4$

Anggraeni, Novri (Unknown)
Dafik, Dafik (Unknown)



Article Info

Publish Date
19 Nov 2014

Abstract

A graph $G(V,E)$ has a $\mathcal{H}$-covering if every edge in $E$ belongs to a subgraph of $G$ isomorphic to $\mathcal{H}$. An $(a,d)$-$\mathcal{H}$-antimagic total covering is a total labeling $\lambda$ from $V(G)\cup E(G)$ onto the integers $\{1,2,3,...,|V(G)\cup E(G)|\}$ with the property that, for every subgraph $A$ of $G$ isomorphic to $\mathcal{H}$ the $\sum{A}=\sum_{v\in{V(A)}}\lambda{(v)}+\sum_{e\in{E(A)}}\lambda{(e)}$ forms an arithmetic sequence. A graph that admits such a labeling is called an $(a,d)$-$\mathcal{H}$-antimagic total covering. In addition, if $\{\lambda{(v)}\}_{v\in{V}}=\{1,...,|V|\}$, then the graph is called $\mathcal{H}$-super antimagic graph. In this paper we study of amalgamasi graph $K_4$ and $W_4$.

Copyrights © 2014






Journal Info

Abbrev

PSMP

Publisher

Subject

Education Mathematics

Description

Prosiding Semnas Matematika dan Pendidikan Mamatika adalah prosiding kumpulan artikel hasil seminar nasional matematika dan pendidikan matematika. Tema semnas berbeda setiap terbitan disesuaikan dengan tema yang dikembangkan oleh panitia semnas. Terbit satu kali dalam setahun secara serial antara ...