Eka Miranda, Eka
Jurusan Sistem Informasi, Fakultas Ilmu Komputer, Universitas Bina Nusantara, Jln. K.H. Syahdan No.9, Palmerah, Jakarta Barat 11480

Published : 14 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 14 Documents
Search

Memajukan Kesehatan Masyarakat dengan Meningkatkan Kesadaran akan Air Bersih : Advancing Public Health by Promoting Clean Water Awareness Miranda, Eka; Marsha; Nugroho, Wahyu
NAWASENA : JOURNAL OF COMMUNITY SERVICE Vol. 1 No. 02 (2023): Vol. 01 No.02 2023
Publisher : NAWASENA : JOURNAL OF COMMUNITY SERVICE

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Program sosialisasi air bersih ini bertujuan untuk meningkatkan kesadaran masyarakat mengenai pentingnya kebersihan dan sanitasi air dalam kehidupan sehari-hari. Kegiatan ini dilaksanakan di Perumahan Casadova, Palangka Raya, pada 14 Juli 2023, dengan pendekatan edukatif melalui lokakarya, demonstrasi, dan diskusi interaktif. Peserta diberikan pemahaman tentang bahaya penyakit akibat air yang terkontaminasi serta teknik sederhana untuk menjaga kebersihan air, seperti perebusan, filtrasi, dan penyimpanan yang aman. Hasil kegiatan menunjukkan peningkatan pengetahuan dan kesadaran peserta terhadap pentingnya air bersih, yang tercermin dari komitmen mereka untuk menerapkan praktik sanitasi yang lebih baik di rumah. Inisiatif ini diharapkan dapat memberikan dampak jangka panjang dalam meningkatkan kesehatan masyarakat dan menciptakan lingkungan yang lebih bersih serta berkelanjutan.
Academic Performance of Graduate Students in Video-Conference-Assisted Online Learning during COVID-19 Based on Cohort Data in Pakistan and Indonesia M Bhatti, Faqir; Miranda, Eka
Indonesian Journal of Mathematics Education Vol. 7 No. 2 (2024): Indonesian Journal of Mathematics Education (In Press)
Publisher : Universitas Tidar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31002/ijome.v7i2.1409

Abstract

The current study found that the COVID-19 pandemic isolation impacted the academic performance of most participants with varied degrees and graduate students in Computer Science and Math. With the option of self-study, online education keeps students on track. This paper aimed to investigate the academic performance impact of graduate program students in the fields of computer science, math, and information systems on online learning during the COVID-19 pandemic. A total of 89 responses were retrieved. The 71 (79.78%) responses came from students at an university in Raiwind, Lahore, Pakistan, and the 18 (20.22%) responses came from students at an university in Jakarta, Indonesia. We discovered that the essential issue of online education was providing students and instructors with easy access to interactive study materials such as video learning. Another significant challenge was the availability of an internet connection, as online learning depended on it. During the COVID-19 pandemic, most students get high course grades (35.96%) and maintain steady course grades (29.21%) in online learning, with some even achieving very good course grades (17.98%). Only a few students (12.36%) and very few (4.49%) received lower grades.
DATA MINING DENGAN METODE KLASIFIKASI NAÏVE BAYES UNTUK MENGKLASIFIKASIKAN PELANGGAN miranda, eka
Infotech: Journal of Technology Information Vol 4, No 1 (2018): JUNI
Publisher : ISTEK WIDURI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37365/it.v4i1.7

Abstract

Tujaun penelitian ini adalah mengklasifikasikan pelanggan berdasarkan tabel transaksi dengan pendekatan knowledge discovery from data (KDD) dan metode data mining naïve bayes classifier dengan manfaat menghasilkan pengetahuan yang berguna untuk mengambil keputusan yang terkait dengan mengelola pelanggan.Untuk menggali pengetahuan dari data yang berjumlah besar tersebut, menggunakan data mining dan metode Naïve Bayes Classifier. Untuk mengklasifikasikan pelanggan digunakan tabel transaksi dari proses pembelian kendaraan bermotor dengan pendekatan Knowledge Discovery from Data (KDD) dan metode data mining Naïve Bayes Classifier. Metode yang digunakan pada penelitian terdiri atas metode pengumpulan data yang digunakan untuk pencariaan kebutuhan informasi dengan menggunakan fact finding technique menurut Thomas Connolly dan Carolyn Begg, yang meliputi: Wawancara (Interview), Persyaratan (Requerements) atau Preferensi (Preferences) dan proses penemuan pengetahuan menggunakan pendekatan Knowledge Discovery from Data (KDD). Penellitian ini mengklasifikasikan pelanggan menjadi dua kelas yaitu kelas pelanggan potensial dan pelanggan tidak potensial dengan menggunakan atribut prediksi klasifikasi terdiri atas Pekerjaan, Jenis Bayar, Tenor dan Usia. Hasil dari penelitian menunjukan bahwa Naïve Bayes Classifier telah dapat mengklasifikasikan pelanggan menjadi dua kelas yaitu kelas pelanggan potensial dan pelanggan tidak potensial dengan nilai akurasi masing-masing sebagai berikut : Sensitivity 97%, Specificity 99,8%, Precision 99,8%, Recall 97%, Accuracy 97%, Error Rate 3%.
Analyzing ChatGPT’s Impact on Graduates’ Communication, Collaboration, and Logical Thinking Skills Using an Extended Technology Acceptance Model Hasri, Raja Alan; Miranda, Eka
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 4 (2025): JUTIF Volume 6, Number 4, Agustus 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.4.4688

Abstract

The rapid rise of ChatGPT in Indonesia—now the third-highest user base worldwide—raises questions about its impact on essential soft skills for new graduates. Recent evidence warns that while ChatGPT supports academic and professional tasks, it may also reduce critical thinking, collaboration, and communication if not properly guided. This study aims to evaluate how ChatGPT usage affects communication, collaboration, and logical thinking skills among recent graduates in Jabodetabek. A cross-sectional survey of 384 respondents was conducted, and data were analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM). The modified Technology Acceptance Model (TAM) demonstrated strong explanatory power, with R² values of 0.830 for Behavioral Intention, 0.699 for Actual Use, and 0.651 for Attitude Toward Use. Hypothesis testing confirmed significant effects, including Perceived Ease of Use on Perceived Usefulness (β = 0.946; t = 172.023; p < 0.001) and Behavioral Intention on Actual Use (β = 0.836; t = 50.416; p < 0.001). Positive attitudes toward ChatGPT were strongly associated with enhanced teamwork, communication, and logical reasoning. This study contributes to the discourse on digital literacy and educational technology in Southeast Asia, demonstrating that ChatGPT can strengthen graduate employability when integrated with proper guidance and ethical use. The findings provide practical implications for computer science and education fields, offering a framework for balancing AI adoption with the preservation of critical human skills.