Claim Missing Document
Check
Articles

Found 6 Documents
Search
Journal : Kubik

Analisis Model Metapopulasi Pada Transmisi Virus Hepatitis A (Studi Kasus di Jawa Barat, Jawa Tengah dan Jawa Timur) Riad Taufik Lazwardi; Diny Zulkarnaen; Esih Sukaesih
KUBIK Vol 4, No 1 (2019): KUBIK : Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v4i1.5675

Abstract

Indonesia merupakan negara endemik hepatitis peringkat ketiga sedunia. Hepatitis merupakan penyakit menular yang disebabkan oleh virus. Penyakit hepatitis terbagi menjadi beberapa tipe, salah satunya virus hepatitis A (HAV). Model matematika yang memodelkan penyebaran penyakit ini adalah model yang dibuat oleh Marco Ajelli. Marco Ajelli membuat model metapopulasi pada transmisi virus hepatitis A (HAV) yang diterapkan di negara Italia. Hasil yang diperoleh adalah vaksinasi yang dilakukan di salah satu negara bagian (Puglia) dapat mengurangi secara signifikan jumlah penderita di negara tersebut secara keseluruhan. Skripsi ini mengajukan sebuah model yang dapat diterapkan di Indonesia khususnya di Jawa Barat, Jawa Tengah dan Jawa Timur. Simulasi dilakukan  untuk mengetahui pengaruh program vaksinasi yang dilakukan pada satu wilayah terhadap wilayah yang lain dan mengetahui wilayah yang paling optimal untuk diberikan program vaksinasi secara massal jika program vaksinasi massal hanya dapat dilakukan pada satu wilayah saja. Oleh karena itu, faktor mobilitas spatial merupakan faktor yang sangat diperhatikan. Dari hasil simulasi yang dilakukan di daerah Jawa Barat, Jawa Tengah dan Jawa Timur diperoleh kesimpulan bahwa program vaksinasi yang dilakukan di Jawa Timur, akan secara optimal mengurangi jumlah penderita hepatitis A di Jawa Barat, Jawa Tengah dan Jawa Timur.
Simulasi Model Mangsa Pemangsa Di Wilayah yang Dilindungi untuk Kasus Pemangsa Tergantung Sebagian pada Mangsa Ipah Junaedi; Diny Zulkarnaen; Siti Julaeha
KUBIK Vol 1, No 1 (2015): KUBIK : Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v1i1.318

Abstract

Suatu model matematika diterapkan pada suatu kasus pemangsa yang tergantung sebagian pada mangsa di wilayah yang dilindungi. Adapun setelah dibentuk model mangsa pemangsa pada kasus ini maka diperoleh empat titik tetap, masing-masing titik tetap tersebut memiliki jenis kestabilan yang berbeda, yakni tidak stabil, saddle, dan stabil asimtotik. Selanjutnya model mangsa pemangsa disimulasikan untuk mengetahui dinamika pertumbuhan populasi mangsa dan pemangsa. Simulasi tersebut menggunakan metode Adam-Bashfort-Moulton dengan prosedur pendahuluan pencarian nilai awal menggunakan metode Euler.
Pencarian Solusi Persamaan Diferensial Parsial Non Linier menggunakan Metode Transformasi Pertubasi Homotopi dan Metode Dekomposisi Adomian Feni Siti Fathonah; Diny Zulkarnaen; Esih Sukaesih
KUBIK Vol 2, No 1 (2017): KUBIK : Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v2i1.1472

Abstract

Persamaan diferensial parsial nonlinear adalah salah satu tinjauan dalam bidang ilmu matematika. Biasanya persamaan nonlinier sangat sulit untuk dipecahkan secara efektif baik secara numerik maupun analisis. Beberapa metode telah dikembangkan untuk menyelesaikan persamaan diferensial parsial nonlinier, salah satunya adalah Metode Transformasi Pertubasi Homotopi(MTPH) dan Metode Dekomposisi Adomian(MDA). Kedua metode ini memiliki teknik yang sangat kuat dan efisien untuk memecahkan persamaan diferensial parsial nonlinier.
SEIHR-SEI Mathematical Model of Zika Virus Transmission with Vector Control Shiddiqie, Ichwal Afrizan; Khumaeroh, Mia Siti; Zulkarnaen, Diny; Diana, Arista Fitri
KUBIK Vol 9, No 2 (2024): KUBIK: Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v9i2.30948

Abstract

Zika virus (ZIKV) is transmitted by Aedes Aegypti mosquito, which is recognized as a vector for viruses causing dengue fever and chikungunya. This study uses SEIHR‐SEI mathematical model to analyze the dynamics of Zika virus transmission. In this model, human population (host) is classified into five compartments: Susceptible Humans (Sh), Exposed Humans (Eh), Infected Humans (Ih), Hospitalized Humans (Hh) and Recovered Humans (Rh). Meanwhile, the mosquito population (vector) is divide into three compartments: Susceptible Vectors (Sv), Exposed Vectors (Ev), and Infected Vectors (Iv). Stability analysis is conducted using Routh‐Hurwitz criteria for assessing local stability and Lyapunov function for evaluating global stability. Moreover, Basic Reproduction Number (R0), which represents the average number of new infections produced by one infected individual in a susceptible population, is derived by using the Next Generation Matrix (NGM) method. The result shows that the equilibrium point for disease‐free conditions is globally asymptotic stable when R0 < 1, meanwhile the equilibrium point for endemic conditions is stable when R0 > 1. The simulation result using endemic data and sensitivity analysis of three parameters, including contact rate between susceptible humans and infected humans (c), hospitalization rate of infected individuals (τ ), and mosquito control rate (ω), reveals that c and ω exert a more significant effect on changes in R0 compared to τ . Therefore, minimizing contact with infected individuals or implementing vector control is more effective than isolating or hospitalizing infected patients.
SEIHR-SEI Mathematical Model of Zika Virus Transmission with Vector Control Shiddiqie, Ichwal Afrizan; Khumaeroh, Mia Siti; Zulkarnaen, Diny; Diana, Arista Fitri
KUBIK Vol 9 No 2 (2024): KUBIK: Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v9i2.30948

Abstract

Zika virus (ZIKV) is transmitted by Aedes Aegypti mosquito, which is recognized as a vector for viruses causing dengue fever and chikungunya. This study uses SEIHR‐SEI mathematical model to analyze the dynamics of Zika virus transmission. In this model, human population (host) is classified into five compartments: Susceptible Humans (Sh), Exposed Humans (Eh), Infected Humans (Ih), Hospitalized Humans (Hh) and Recovered Humans (Rh). Meanwhile, the mosquito population (vector) is divide into three compartments: Susceptible Vectors (Sv), Exposed Vectors (Ev), and Infected Vectors (Iv). Stability analysis is conducted using Routh‐Hurwitz criteria for assessing local stability and Lyapunov function for evaluating global stability. Moreover, Basic Reproduction Number (R0), which represents the average number of new infections produced by one infected individual in a susceptible population, is derived by using the Next Generation Matrix (NGM) method. The result shows that the equilibrium point for disease‐free conditions is globally asymptotic stable when R0 < 1, meanwhile the equilibrium point for endemic conditions is stable when R0 > 1. The simulation result using endemic data and sensitivity analysis of three parameters, including contact rate between susceptible humans and infected humans (c), hospitalization rate of infected individuals (τ ), and mosquito control rate (ω), reveals that c and ω exert a more significant effect on changes in R0 compared to τ . Therefore, minimizing contact with infected individuals or implementing vector control is more effective than isolating or hospitalizing infected patients.
Comparative Study of Parameter Estimation Methods in Pharmacokinetic Model with Oral Administration: Simulations of Theophylline Drug Concentration Zulkarnaen, Diny
KUBIK Vol 9 No 1 (2024): KUBIK: Jurnal Publikasi Ilmiah Matematika
Publisher : Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/kubik.v9i1.31233

Abstract

Parameter estimation for the elimination and absorption rate constants is performed in a pharmacokinetic model, where a drug is administered orally. Some methods have been introduced to estimate these parameters but without comparison which one gives better estimates. Here, two different methods are used for comparison in estimating the absorption rate constant: the Wagner-Nelson and residual methods. The Wagner-Nelson method requiring fewer data sets while the residual method uses all available data sets for estimation. For the elimination rate constant estimate, we use only the least square error method. Simulations are conducted using sample data points of Theophylline drug concentration that varies over time to estimate the parameters. These parameter values are then utilized to approximate the drug concentration over time, using both methods. These approximations are then compared with the actual data sets to see and calculate the error values so that the best method can be determined. The comparison shows that the residual method provides better approximation since this method utilizes the entire sample data points, while the Wagner-Nelson uses only the data in the beginning time, that is when the absorption process is dominant.