Erna Sri Rahayu, Erna Sri
Pascasarjana Universitas Dian Nuswantoro

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Penerapan Metode Average Gain, Threshold Pruning dan Cost Complexity Pruning Untuk Split Atribut Pada Algoritma C4.5 Rahayu, Erna Sri; Wahono, Romi Satria; Supriyanto, Catur
Journal of Intelligent Systems Vol 1, No 2 (2015)
Publisher : IlmuKomputer.Com

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (695.078 KB)

Abstract

C4.5 is a supervised learning classifier to establish a Decision Tree of data. Split attribute is main process in the formation of a decision tree in C4.5. Split attribute in C4.5 can not be overcome in any misclassification cost split so the effect on the performance of the classifier. After the split attributes, the next process is pruning. Pruning is process to cut or eliminate some of unnecessary branches. Branch or node that is not needed can cause the size of Decision Tree to be very large and it is called over- fitting. Over- fitting is state of the art for this time. Methods for split attributes are Gini Index, Information Gain, Gain Ratio and Average Gain which proposed by Mitchell. Average Gain not only overcome the weakness in the Information Gain but also help to solve the problems of Gain Ratio. Attribute split method which proposed in this research is use average gain value multiplied by the difference of misclassification. While the technique of pruning is done by combining threshold pruning and cost complexity pruning. In this research, testing the proposed method will be applied to datasets and then the results of performance will be compared with results split method performance attributes using the Gini Index, Information Gain and Gain Ratio. The selecting method of split attributes using average gain that multiplied by the difference of misclassification can improve the performance of classifiying C4.5. This is demonstrated through the Friedman test that the proposed split method attributes, combined with threshold pruning and cost complexity pruning have accuracy ratings in rank 1. A Decision Tree formed by the proposed method are smaller. Keyword: Decision Tree, C4.5, split attribute, pruning, over-fitting, gain, average gain.
Penggunaan Multimedia Interaktif Model Tutorial dalam Meningkatkan Motivasi dan Hasil Belajar Pada Pembelajaran Menulis Bahasa Inggris Saepulloh, Saepulloh; Rahayu, Erna Sri; Nurparida, Nurparida; Ratnawati, Yeli; Setiawati, Wawat
Gunahumas Vol 4, No 1 (2021): Gunahumas
Publisher : Universitas Pendidikan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17509/ghm.v4i1.31485

Abstract

Salah Satu k eterampilan Yang memucat Sulit dikuasai PESERTA DIDIK Adalah keterampilan menulis ( menulis ) . Penelitian ini dilatar belakangi oleh rendahnya hasil belajar dan motivasi belajar siswa pada pembelajaran bahasa Inggris. Tujuan penelitian ini adalah untuk melihat peningkatan motivasi dan hasil belajar siswa dengan menggunakan model interaktif multimedia tutorial pada pembelajaran bahasa inggris. Metode penelitian yang digunakan adalah quasi eksperimen dengan desain Nonequivalent Control Group Design .Hasil penelitian berdasarkan hasil uji peningkatan motivasi belajar siswa pada kelas eksperimen sebesar 0,70 dengan kategori tinggi dan kelas kontrol sebesar 0,31 dengan aktegori sedang yaitu peningkatan motivasi belajar pada kelas eksperimen dengan menggunakan model tutorial interaktif yang lebih tinggi dibandingkan dengan pembelajaran konvensional. H asil uji hip o tesis Nilai Asymp Sig. (2-tailed) = 0,000 lebih kecil dari α = 0,05 maka Ha diterima maka dapat diabaikan bahwa terdapat peningkatan peningkatan hasil belajar antara kelas eksperimen dengan menggunakan multimedia interaktif tutorial dan kelas control dengan pembelajaran menggunakan metode ceramah