Claim Missing Document
Check
Articles

Found 5 Documents
Search

Kemampuan Pemecahan Masalah Matematis Siswa SMP ditinjau dari Gaya Kognitif Refni Adesia Pradiarti; Subanji Subanji
Mosharafa: Jurnal Pendidikan Matematika Vol 11, No 3 (2022)
Publisher : Institut Pendidikan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (760.931 KB) | DOI: 10.31980/mosharafa.v11i3.1506

Abstract

Siswa dituntut dapat menyelesaikan soal pemecahan masalah dalam setiap pembelajaran matematika. Namun ketika observasi awal, banyak ditemukan siswa kurang mampu memecahkan soal matematis dengan tepat dan sedikit siswa yang dapat menjawab persoalan matematis berdasarkan prosedur Polya terutama di Sumenep. Tujuan Penelitian untuk mendeskripsikan tingkat pemahaman peserta didik dalam mencari solusi dari permasalahan matematis yang terdapat pada materi Himpunan berdasarkan gaya kognitif Field Dependent (FD) dan Field Independent (FI). Metode penelitian ini yaitu deskriptif kualitatif. Hasil penelitian berupa data yang diambil dari peserta didik kelas 7A dan 7B di MTs Negeri 1 Sumenep menggunakan tes GEFT berdasarkan indikator pemecahan masalah Polya yang mengacu pada indikator NCTM. Dalam melakukan analisis lebih lanjut, dipilih 4 orang sebagai subjek untuk dilakukan wawancara secara mendalam dan dilakukan analisis pemecahan masalah. Dalam penelitian ini didapatkan peserta didik jenis FD kurang baik dalam memecahkan masalah matematis, sedangkan pada peserta didik jenis FI sangat baik dalam memecahkan masalah matematis dikarenakan mampu memenuhi semua indikator pemecahan masalah.Students are required to be able to solve problem-solving problems in every mathematics lesson. However, during the initial observations, it was found that many students were less able to solve mathematical problems correctly and few students were able to answer mathematical problems based on the Polya procedure, especially in Sumenep. The purpose of the study was to describe the level of understanding of students in finding solutions to mathematical problems contained in the set material based on Field Dependent (FD) and Field Independent (FI) cognitive styles. This research method is descriptive and qualitative. The results of the study are data taken from students in grades 7A and 7B at MTs Negeri 1 Sumenep using the GEFT test based on Polya's problem-solving indicators which refer to the NCTM indicator. In conducting further analysis, 4 people were selected as subjects for in-depth interviews and problem-solving analysis. In this study, it was found that the FD-type students were not good at solving mathematical problems, while the FI-type students were very good at solving mathematical problems because they were able to problem-solving indicators.
Kemampuan Pemecahan Masalah Matematis Siswa SMP ditinjau dari Gaya Kognitif Refni Adesia Pradiarti; Subanji
Mosharafa: Jurnal Pendidikan Matematika Vol. 11 No. 3 (2022): September
Publisher : Department of Mathematics Education Program IPI Garut

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31980/mosharafa.v11i3.729

Abstract

Siswa dituntut dapat menyelesaikan soal pemecahan masalah dalam setiap pembelajaran matematika. Namun ketika observasi awal, banyak ditemukan siswa kurang mampu memecahkan soal matematis dengan tepat dan sedikit siswa yang dapat menjawab persoalan matematis berdasarkan prosedur Polya terutama di Sumenep. Tujuan Penelitian untuk mendeskripsikan tingkat pemahaman peserta didik dalam mencari solusi dari permasalahan matematis yang terdapat pada materi Himpunan berdasarkan gaya kognitif Field Dependent (FD) dan Field Independent (FI). Metode penelitian ini yaitu deskriptif kualitatif. Hasil penelitian berupa data yang diambil dari peserta didik kelas 7A dan 7B di MTs Negeri 1 Sumenep menggunakan tes GEFT berdasarkan indikator pemecahan masalah Polya yang mengacu pada indikator NCTM. Dalam melakukan analisis lebih lanjut, dipilih 4 orang sebagai subjek untuk dilakukan wawancara secara mendalam dan dilakukan analisis pemecahan masalah. Dalam penelitian ini didapatkan peserta didik jenis FD kurang baik dalam memecahkan masalah matematis, sedangkan pada peserta didik jenis FI sangat baik dalam memecahkan masalah matematis dikarenakan mampu memenuhi semua indikator pemecahan masalah. Students are required to be able to solve problem-solving problems in every mathematics lesson. However, during the initial observations, it was found that many students were less able to solve mathematical problems correctly and few students were able to answer mathematical problems based on the Polya procedure, especially in Sumenep. The purpose of the study was to describe the level of understanding of students in finding solutions to mathematical problems contained in the set material based on Field Dependent (FD) and Field Independent (FI) cognitive styles. This research method is descriptive and qualitative. The results of the study are data taken from students in grades 7A and 7B at MTs Negeri 1 Sumenep using the GEFT test based on Polya's problem-solving indicators which refer to the NCTM indicator. In conducting further analysis, 4 people were selected as subjects for in-depth interviews and problem-solving analysis. In this study, it was found that the FD-type students were not good at solving mathematical problems, while the FI-type students were very good at solving mathematical problems because they were able to problem-solving indicators.
Kemampuan Berpikir Kreatif Siswa dalam Menyelesaikan Masalah Open Ended Materi Geometri Pradiarti, Refni Adesia; Sudirman, Sudirman; Sisworo, Sisworo
Teorema: Teori dan Riset Matematika Vol 9, No 1 (2024): Maret
Publisher : Universitas Galuh

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25157/teorema.v9i1.12782

Abstract

Berpikir kreatif menjadi salah satu kemampuan yang harus dimiliki siswa pada abad 21. Kreativitas matematika siswa dapat diukur melalui pemberian masalah open ended kepada siswa. Penelitian ini bertujuan untuk mendeskripsikan kemampuan berpikir kreatif siswa melalui pemberian soal open ended. Penelitian dilakukan di SMAN 3 Malang. Banyak subjek penelitian 5 siswa. Jenis penelitian ini adalah deskriptif kualitatif. Data penelitian didapatkan dari hasil tes berpikir kreatif dan wawancara dengan subjek. Kemampuan berpikir kreatif subjek dianalisis mengacu pada tercapainya 3 indikator berpikir kreatif yaitu fluency, flexibility, dan originality. Dari hasil penelitian ditemukan 5 tingkat berpikir kreatif yang dikategorikan dalam level 0-4. Subjek S1 yang mampu memenuhi seluruh indikator berpikir kreatif yaitu fluency (kelancaran), flexibility (keluwesan), dan originality (kebaruan) merupakan siswa dengan tingkat berpikir kreatif level 4 yaitu sangat kreatif, subjek S2 yang hanya mampu memenuhi indikator flexibility dan originality dapat dikategorikan sebagai tingkat berpikir kreatif level 3 yaitu kreatif, subjek S3 yang hanya mampu memenuhi indikator flexibility (keluwesan) merupakan siswa dengan tingkat berpikir kreatif level 2 yaitu cukup kreatif, subjek S4 yang hanya mampu memenuhi indikator fluency (kelancaran) merupakan siswa dengan tingkat berpikir kreatif level 1 yaitu kurang kreatif, dan subjek S5 yang belum mampu memenuhi seluruh indikator berpikir kreatif merupakan siswa dengan tingkat berpikir kreatif level 0 yaitu tidak kreatif.Kata kunci: Berpikir kreatif, Masalah Open Ended, Geometri.
PENERAPAN PEMBELAJARAN MATEMATIKA DENGAN PENDEKATAN SAINTIFIK BERBANTUAN WORKSHEET GEOGEBRA DAN LKPD DENGAN PENDEKATAN PBL PADA MATERI MATRIKS Adesia Pradiarti, Refni; Hidayanto, Erry
Jurnal MIPA dan Pembelajarannya Vol. 4 No. 11 (2024): Nopember
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The aim of this article describes the results of implementing mathematics learning practices on matrix material using discussion and question and answer learning methods through a scientific approach assisted by GeoGebra worksheet learning media and problem-based LKPD, namely the PBL approach. The model used in practice contains the competencies that students need to have in the 21st century, namely 4C (Creativity, Critical Thinking, Collaboration, and Communication). Based on the results of learning practices related to the Introduction, Core and Closing activities that have been implemented, the use of a scientific approach in learning mathematics on matrix material can provide opportunities for students to widely explore and elaborate on the material studied through the stages of observing, asking questions, gathering information, processing information, and communicating. In addition, using GeoGebra worksheets and LKPD designed using a PBL approach can help students improve their problem-solving skills significantly because students can learn how to identify problems, gather information, and find the right solution to the problems presented.
Students' Creative Thinking Process in Solving Multiple Solution Tasks on Geometry Material Refni Adesia Pradiarti; Sudirman Sudirman; Sisworo Sisworo
Jurnal Pendidikan MIPA Vol 25, No 1 (2024): Jurnal Pendidikan MIPA
Publisher : FKIP Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This research is a qualitative descriptive research which aims to explore students' creative thinking process in completing MST on geometry material. The creative thinking process of each individual is different according to their level so it is necessary to analyze how students' creative thinking process is in completing MST based on level of creative thinking. Researchers refer to the stages of creative thinking developed by Wallas consisting of preparation, incubation, illumination and verification stages. Researchers focused subjects on the 5 levels of creative thinking developed by Siswono in the stages of creative thinking, namely subjects with levels of creative thinking level 4 (very creative), 3 (creative), 2 (quite creative), 1 (less creative), and 0 (not creative). Each level is described starting from the preparation, incubation, illumination and verification stages. Based on the research results, there are differences in creative thinking processes at each level of creative thinking, especially at the verification stage, only students with creative levels 4, 3, and 2 carry out the verification stage; The incubation stage for students with creative levels 2, 1, and 0 takes a long time so that subjects with a long incubation stage are not optimal in completing MST to get many alternative solutions.      Keywords: geometry, multiple solution tasks, creative thinking process.DOI: http://dx.doi.org/10.23960/jpmipa/v25i1.pp248-263