Haris Nubli
Pukyong National University

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Design of the Bengawan Unmanned Vehicle (UV) Roboboat: Mandakini Neo Haris Nubli; Fahri Setyo Utomo; Hananta Diatmaja; Aditya Rio Prabowo; Ubaidillah Ubaidillah; Didik Djoko Susilo; Wibowo Wibowo; Teguh Muttaqie; Fajar Budi Laksono
Mekanika: Majalah Ilmiah Mekanika Vol 21, No 2 (2022): MEKANIKA: Majalah Ilmiah Mekanika
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/mekanika.v21i2.61624

Abstract

Mandakini Neo is an autonomous vehicle that was designed and built by the students of the Universitas Sebelas Maret, which was included in the Bengawan Unmanned Vehicle (UV) Roboboat Team to compete in the annual international Roboboat competition of 2021. This competition requires participants to complete several missions; one of the main missions is to move through two gates made from four poles using full automatic navigation, in order to continue on with the other missions. To complete the course, we used Pixhawk and GPS to allow the ship to run automatically, while minimizing the ship’s movement tolerance. The use of Mission Planner software for monitoring, and also for color and shape image processing to help with the reading of objects, along with a sensor fitted on the ship, allowed the mission to be completed. Mandakini Neo was made with the capacity, speed, and comfort of the ship in mind, as well as the ship’s hydrodynamic performance, stability, volume, structural integrity, and construction cost. Following its development we conducted tests of stability, maneuverability, and seakeeping in order to achieve the smallest possible resistance rate; for this purpose, we used the Savitsky method. The manufacture of the ship also required the choosing of the material, the use of the sensor, and also selection of an appropriate system. Finally, the design that we developed was a ship with a catamaran hull type, for which the dimensions had already been calculated, and the proper materials decided, and simple electrical components were able to be obtained for the sensor and the system.
Evaluating the Influence of Environmental Factors and Parameters on Advancements in Welding and Joining Processes: A Review Sudarno Sudarno; Quang Thang Do; Haris Nubli; Dandun Mahesa Prabowoputra; Nur Candra Dana Agusti; Ridwan Ridwan; Anggi Vandika
Mekanika: Majalah Ilmiah Mekanika Vol 22, No 2 (2023): MEKANIKA: Majalah Ilmiah Mekanika
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/mekanika.v22i2.75378

Abstract

This review article presents a comprehensive overview of welding, including its environmental influence, common welding failures, welding parameters, and predictions of development regarding welding and corrosion. The quality and integrity of welds can be significantly affected by environmental factors such as temperature, humidity, and atmospheric contaminants. Moreover, welding failures can occur due to various reasons, such as improper welding techniques, inadequate preparation, corrosion, or material defects, leading to structural weaknesses and compromised joint integrity. Furthermore, notable progress has been achieved in welding system technology, encompassing automation, robotics, and real-time monitoring. These advancements underscore the vital role of welding parameters in transforming control, precision, and productivity within the welding process. The integration of innovative welding systems has led to improved welding efficiency, reduced human error, and increased overall process reliability. This review consolidates knowledge from diverse sources, making it a valuable resource for researchers, practitioners, and industries involved in welding.
Numerical Analysis of Openings in Stiffeners under Impact Loading: Investigating Structural Response and Failure Behavior Ridwan Ridwan; Sudarno Sudarno; Haris Nubli; Achmad Chasan; Iwan Istanto; Pandu Sandi Pratama
Mekanika: Majalah Ilmiah Mekanika Vol 22, No 2 (2023): MEKANIKA: Majalah Ilmiah Mekanika
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/mekanika.v22i2.76774

Abstract

As the demand for lightweight ships continues to rise, there is a growing necessity to explore innovative methods that can reduce the weight of ship structures without altering the materials used. This research addresses this challenge by investigating the effect of opening in stiffener under impact loading. The research aims to provide valuable insights into optimizing weight reduction strategies while ensuring the ship's overall strength and performance remain uncompromised. To achieve this goal, the study employed the finite element method as a solver. By simulating impact scenarios and analyzing stiffener responses, the numerical analysis quantified the structural behavior and failure modes. The focus was on understanding the impact of openings on the structural integrity and how it relates to their positioning relative to the impact point. The results of the study indicate that opening slightly distant from the impact point exhibit greater strength, showcasing a counterintuitive relationship between opening placement and structural response.