Claim Missing Document
Check
Articles

Found 16 Documents
Search

Integrating Hybrid Statistical and Unsupervised LSTM-Guided Feature Extraction for Breast Cancer Detection Setiadi, De Rosal Ignatius Moses; Ojugo, Arnold Adimabua; Pribadi, Octara; Kartikadarma , Etika; Setyoko, Bimo Haryo; Widiono, Suyud; Robet, Robet; Aghaunor, Tabitha Chukwudi; Ugbotu, Eferhire Valentine
Journal of Computing Theories and Applications Vol. 2 No. 4 (2025): JCTA 2(4) 2025
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.12698

Abstract

Breast cancer is the most prevalent cancer among women worldwide, requiring early and accurate diagnosis to reduce mortality. This study proposes a hybrid classification pipeline that integrates Hybrid Statistical Feature Selection (HSFS) with unsupervised LSTM-guided feature extraction for breast cancer detection using the Wisconsin Diagnostic Breast Cancer (WDBC) dataset. Initially, 20 features were selected using HSFS based on Mutual Information, Chi-square, and Pearson Correlation. To address class imbalance, the training set was balanced using the Synthetic Minority Over-sampling Technique (SMOTE). Subsequently, an LSTM encoder extracted non-linear latent features from the selected features. A fusion strategy was applied by concatenating the statistical and latent features, followed by re-selection of the top 30 features. The final classification was performed using a Support Vector Machine (SVM) with RBF kernel and evaluated using 5-fold cross-validation and a held-out test set. Experimental results showed that the proposed method achieved an average training accuracy of 98.13%, F1-score of 98.13%, and AUC-ROC of 99.55%. On the held-out test set, the model reached an accuracy of 99.30%, precision of 100%, and F1-score of 99.05%, with an AUC-ROC of 0.9973. The proposed pipeline demonstrates improved generalization and interpretability compared to existing methods such as LightGBM-PSO, DHH-GRU, and ensemble deep networks. These results highlight the effectiveness of combining statistical selection and LSTM-based latent feature encoding in a balanced classification framework.
Performance Evaluation of RESTful API in Sales Target Monitoring System for Direct Sales and Sales Canvassers Widiono, Suyud; Friwaldi, Restian Dwi; Anggara, Afwan
Jurnal Informatika Vol 12, No 2 (2025): October
Publisher : Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/inf.v12i2.25747

Abstract

In an increasingly competitive digital era, manual sales target monitoring often leads to delayed information and inefficiency in decision-making. This research aims to develop a web and mobile-based sales target monitoring system integrated with RESTful API to enhance the efficiency of monitoring the performance of direct sales and sales canvassers. The system is developed using the Laravel framework for the back-end and Flutter for the mobile application, with Agile methodology applied in the development process. Testing is conducted using the Black Box Testing method to ensure the accuracy of system functionalities, including user authentication, sales data management, and sales target monitoring. Additionally, load testing is performed using Apache JMeter with scenarios of 500, 750, and 1000 users. The test results show that the system has stable performance with an average response time of 758 ms for 500 users, 762 ms for 750 users, and 880 ms for 1000 users, all below the threshold of 900 ms. The error rate is recorded at 0.00%, and the system throughput exceeds the set target, indicating the system's reliability in handling simultaneous user requests. The conclusion of this research shows that the implementation of RESTful API in the sales monitoring system can improve operational efficiency, enable real-time data exchange, and support faster, data-driven decision-making. As a recommendation, further development could include broader integration with mobile applications and the implementation of AI-based analytics for sales strategy optimization.
APLIKASI GAMIFY PELATIHAN SUMBER DAYA MANUSIA (SDM) KARYAWAN MENGGUNAKAN METODE USER CENTERED DESIGN (UCD) Nugraha, Havin Neo Dimas; Widiono, Suyud
JOISIE (Journal Of Information Systems And Informatics Engineering) Vol 8 No 2 (2024)
Publisher : Institut Bisnis dan Teknologi Pelita Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35145/joisie.v8i2.4715

Abstract

Setiap perusahaan memiliki visi dan misi untuk mendukung kemajuan dan pengembangan bisnis. Sumber Daya Manusia (SDM) menjadi bagian penting yang layak mendapatkan perhatian. Perusahaan memiliki kebutuhan penting untuk menyiapkan program pelatihan dan pengembangan dalam rangka menyiapkan SDM yang berkualitas dan kompeten. Pada perusahaan masih menggunakan metode pelatihan konvensional sehingga karyawan yang mengikuti kegiatan cenderung rendah tingkat keterlibatannya dan rendah motivasi. Pelatihan konvensional sering kali dianggap membosankan dan kurang interaktif sehingga menyebabkan karyawan tidak sepenuhnya memahami materi yang diajarkan. Akibatnya, kualitas pelatihan menurun dan perusahaan kesulitan dalam mengidentifikasi karyawan yang berbakat dan kompeten. Untuk menangani masalah sistem yang masih konvensional perlu dilakukan penelitian untuk menciptakan sistem baru yang dapat membantu mengelola SDM pada perusahaan. Metode gamifikasi dengan penggunaan elemen-elemen permainan dalam konteks non-permainan untuk meningkatkan keterlibatan dan motivasi karyawan ketika menggunakan sistem dalam bentuk aplikasi. Metode pengembangan perangkat lunak yang digunakan adalah metode User Centered Design (UCD). Sistem dibuat dalam bentuk situs web dengan menggunakan bahasa pemrograman PHP, dan database MySQL untuk mengelola data-datanya. Ketika aplikasi sudah jadi, maka pengujian dilakukan dengan Black Box Testing. Aplikasi yang dihasilkan dalam bentuk website dilengkapi dengan fitur “Game Play” yang dapat meningkatkan ketertarikan karyawan. Berdasarkan hasil akhir penelitian, aplikasi ini membantu perusahaan dalam mengidentifikasi karyawan yang berbakat dan kompeten, serta meningkatkan efektivitas program pelatihan.
A Government-Oriented Vulnerability Disclosure Program Model Based on Ethical Hacker Perspectives Suryana, Rio Putra; Widiono, Suyud
Journal of Scientific Research, Education, and Technology (JSRET) Vol. 4 No. 4 (2025): Vol. 4 No. 4 2025
Publisher : Kirana Publisher (KNPub)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58526/jsret.v4i4.948

Abstract

Digital transformation within government agencies has expanded the number of public-sector digital assets that require continuous cybersecurity protection. However, vulnerability reporting mechanisms in Indonesia remain fragmented, unstandardized, and legally ambiguous, limiting effective collaboration between ethical hackers and government institutions. This study explores the motivations, preferences, and challenges experienced by active vulnerability researchers in participating in government-led Vulnerability Disclosure Programs (VDPs). A descriptive qualitative approach was applied using open- and closed-ended online questionnaires completed by six respondents with proven experience in legal vulnerability reporting. The findings reveal that clear scope definition, transparent rules, timely responses, and legal protection (safe harbour) are the primary factors influencing participation. Although financial incentives are considered beneficial, most participants are willing to report without monetary rewards when non-financial recognition—such as points, badges, or official acknowledgment—is provided. The study also identifies key barriers, including unclear scope, lack of government responsiveness, and concerns regarding legal repercussions. Based on these insights, this work proposes a structured and centralized vulnerability reporting framework tailored for government environments. The proposed model emphasizes clear policies, triage transparency, non-monetary recognition systems, and safe-harbour protections to strengthen national cybersecurity resilience through collaborative public engagement.
Optimizing the Waterfall Method in Designing an Android-Based Mobile Application for Table Reservation in Coffee Shops Galih, Rahardian Damar; Widiono, Suyud
Journal of Scientific Research, Education, and Technology (JSRET) Vol. 4 No. 4 (2025): Vol. 4 No. 4 2025
Publisher : Kirana Publisher (KNPub)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58526/jsret.v4i4.956

Abstract

The growth of the coffee shop industry in Indonesia has caused problems in the table reservation system, which is still done manually, such as long queues, uncertainty of seat availability, and poor service. The purpose of this research is to improve service quality by developing an Android-based mobile application that enables table booking and reservation. Requirement analysis, system design, implementation, testing, and maintenance are the stages of the Waterfall Software Development Life Cycle (SDLC) used. Field observations, interviews with managers, and customer questionnaires are the methods used to obtain research data. The implementation results show that the application is capable of making real-time reservations, providing status notifications, and helping managers monitor table capacity. In addition, testing shows that the system can improve customer satisfaction, speed up the reservation process, and reduce queues. Thus, this research found that optimizing the Waterfall method can produce an application that is stable, organized, and relevant to the needs of the contemporary coffee shop industry.
PENGEMBANGAN APLIKASI PEMESANAN MAKANAN BERBASIS ANDROID DENGAN ALGORITMA BUBBLE SORT Ramadhan, Reza Pajri; Widiono, Suyud
Jurnal Informatika Teknologi dan Sains (Jinteks) Vol 7 No 4 (2025): EDISI 26
Publisher : Program Studi Informatika Universitas Teknologi Sumbawa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51401/jinteks.v7i4.6813

Abstract

Perkembangan teknologi mobile mendorong inovasi dalam berbagai sektor, termasuk bisnis kuliner. Penelitian ini bertujuan untuk mengembangkan aplikasi pemesanan makanan berbasis Android yang dapat meningkatkan efisiensi proses antrian dan pemesanan pada restoran. Metode pengembangan yang digunakan adalah prototype, dengan tahapan meliputi pengumpulan data melalui observasi dan wawancara, analisis kebutuhan, perancangan sistem (UML), serta implementasi menggunakan Android Studio dan database SQL. Algoritma Bubble Sort diintegrasikan untuk mengurutkan menu berdasarkan preferensi seperti harga atau popularitas. Hasil penelitian berupa sebuah aplikasi Android fungsional yang memudahkan pelanggan memesan makanan dan membantu admin mengelola pesanan serta pembayaran. Simpulan menunjukkan bahwa aplikasi ini berpotensi meningkatkan pengalaman pengguna dan efisiensi operasional restoran, meskipun pengujian lebih lanjut diperlukan untuk mengukur performa algoritma pengurutan secara kuantitatif. Pengembangan ke depan dapat menambahkan fitur pembayaran elektronik yang lebih beragam.