Claim Missing Document
Check
Articles

Found 3 Documents
Search

Media Pembelajaran Berbasis Mobile Tajwid Pada Lembaga Bimbingan Masuk Gontor dengan Metode Demonstrasi Hisnu Al Mujahidin; Dihin Muriyatmoko; Jumhurul Umami
Jurnal Abdimas Adpi Sosial dan Humaniora Vol. 1 No. 2 (2020):  Jurnal Abdimas ADPI Sosial dan Humaniora
Publisher : Asosiasi Dosen Pengabdian kepada Masyarakat Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47841/jsoshum.v1i2.163

Abstract

The Darussalam Gontor Islamic Boarding School graduates established a tutoring institution for prospective students who wish to enter Gontor in their respective regions. The institution is called the Gontor Entrance Guidance Institute. Prospective students who want to enter Gontor do not all pass the oral exam, one of the factors is the difficulty in tajwid lessons. At the Gontor entrance guidance institution, tajwid learning currently uses a limited number of printed books, making it difficult for those who want to learn it. Among them are Gontor entrance guidance agencies, branch cottages and alumni lodges. For that we need other learning media that can solve these problems, one of which is the mobile smartphone media. The purpose of this research is to make it easier for prospective students who want to learn the Gontor version of Tajwid. The implementation of this application uses a waterfall approach and applies a demonstration method. Testing the Tajwid 2 application is done in 6 ways. With the blackbox method, it shows the application is running smoothly. The use of hardware with six smartphones of various brands and screen sizes indicates the application is running well. A learning media expert gave an average rating of 94%. Tajwid teachers about learning materials by distributing questionnaires to 6 respondents who gave good feedback with a value of 87%. Prospective students about learning materials by distributing questionnaires to 15 respondents who gave good feedback with a value of 88.5%. General Google Playstore users scored 4.9 out of 5 (highest total rating) totaling 112 reviews (https://play.google.com/store/apps/details?id=com.konu.tajwid). The results of the questionnaire show that this application is very helpful, it can be an effective learning tool, but the application is only helpful, it cannot replace the role of the teacher and the interaction between teachers and real students.
Klasifikasi Tingkat Keparahan Penyakit Leafblast Tanaman Padi Menggunakan MobileNetv2 Imam Fauzi Annur; Jumhurul Umami; Moch. Nasheh Annafii; Niken Trisnaningrum; Oddy Virgantara Putra
Fountain of Informatics Journal Vol. 8 No. 1 (2023): Mei
Publisher : Universitas Darussalam Gontor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21111/fij.v8i1.9419

Abstract

AbstrakPadi merupakan tanaman pangan pokok di Indonesia, dan produksinya merupakan kunci ketahanan pangan negara. Keberhasilan panen merupakan faktor penting dalam pencegahan impor bahan pangan pokok. Tantangan terbesar dalam memanen tanaman adalah adanya virus, jamur, dan hama yang dapat merusak tanaman. Penelitian ini bertujuan untuk membuat sistem klasifikasi tingkat keparahan penyakit daun pada tanaman padi yang terkena penyakit blas daun dengan bantuan algoritma machine learning. MobileNetV2 adalah arsitektur Convolutional Neural Network (CNN) yang menggunakan Depthwise Separable Convolution untuk membangun model yang ringan dan dirancang untuk mengatasi proses yang memiliki resource yang berlebih. Dataset yang digunakan pada penelitian ini merupakan hasil murni observasi peneliti yang sudah divalidasi oleh ahli dengan total 300 data asli. Model MobileNetV2 ternyata sangat berhasil dalam mengklasifikasikan objek, dengan akurasi 78,33%. dengan hasil penelitian ini, petani dapat terbantu dalam mengenali tingkat keparahan penyakit leafblast pada tanaman padi sehingga pemberian bahan kimia berupa fungisida sesuai dengan dosis anjuran tingkat keparahan. Kata kunci: Klasifikasi, leafblast, padi, citra, model pre-trained, MobileNetV2. Abstract[Classification Of Rice Blast Disease Using MobileNetV2] Rice is a staple food crop in Indonesia, and its production is key to the country's food security. Successful harvesting is an important factor in preventing imports of staple foods. The biggest challenge in harvesting crops is the presence of viruses, fungi, and pests that can damage plants. This research aims to create a classification system for leaf disease severity in rice plants affected by leaf blast disease with the help of machine learning algorithms. MobileNetV2 is a Convolutional Neural Network (CNN) architecture that uses Depthwise Separable Convolution to build lightweight models and is designed to overcome processes that have excessive resources. The dataset used in this study is the result of pure researcher observations that have been validated by experts with a total of 300 original data. The MobileNetV2 model turned out to be very successful in classifying objects, with an accuracy of 78.33%. with the results of this study, farmers can be helped in recognizing the severity of leafblast disease in rice plants so that the provision of chemicals in the form of fungicides in accordance with the recommended dose of severity.Keywords: Classification, leafblast, rice, image, pre-trained model, MobileNetV2
Metode Holt Winters Untuk Peramalan Kasus Malnutrisi Pada Rumah Sakit: Pendekatan Time Series Analysis Taufan Eka Hidayatullah; Aziz Musthafa; Jumhurul Umami
Prosiding Sains dan Teknologi Vol. 2 No. 1 (2023): Seminar Nasional Sains dan Teknologi (SAINTEK) ke 2 - Februari 2023
Publisher : DPPM Universitas Pelita Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Peramalan kejadian malnutrisi memungkinkan petugas kesehatan untuk mengambil tindakan yang tepat dalam menangani pasien di rumah sakit, mengurangi kerugian. karena terjadi lonjakan yang sangat kecil pada kasus ini dalam 5 tahun sebelumnya, sehingga menimbulkan komplikasi bagi tim kesehatan dalam penanganan dan penatalaksanaannya. Tujuan dari penelitian ini adalah untuk memodelkan akurasi peramalan menggunakan data pasien berisiko malnutrisi dari tahun 2013 hingga 2020 untuk peramalan tahun berikutnya menggunakan metode peramalan Holt-Winters (HW). Model Triple Exponential Smoothing digunakan untuk menyelidiki sensitivitas ketergantungan estimasi jumlah kasus. Hasil penelitian menunjukkan bahwa jika dibandingkan dengan model lain, prediksi root mean square error (RMSE) kasus malnutrisi adalah 38,54%. Jika dibandingkan dengan model Holt-Winters lainnya, penggunaan tren teredam menghasilkan mean absolute error (MAE) sebesar 26,94% dan mean absolute percentage error (MAPE) sebesar 0,31.