Claim Missing Document
Check
Articles

Found 2 Documents
Search

SURVEY BOAT PROTOTYPE DESIGN FOR REMOTE AREA Furqon, Muhammad Tanzil; Kadhafi, Muammar; Sunardi, Sunardi; Rijal, Seftiawan Samsu; Tsani, Muhammad Dafa'anh Murya
Journal of Environmental Engineering and Sustainable Technology Vol 8, No 1 (2021)
Publisher : Directorate of Research and Community Service (DRPM)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jeest.2021.008.01.3

Abstract

The water survey activities in remote areas have many challenges, such as cost, transportation to location, access to the location, boat for water survey, manpower, and other factors. This research proposes the method of water survey to overcome the difficulties encountered in surveying in remote areas. The mini boat prototype was designed and fabricated by using a control system to operate in the water. The propulsion power prediction was carried out, by comparison, the similarity to the fullscale ships with 9.5 knots of velocity. Furthermore, the wave-making resistance was simulated by software and confirmed by the trial. The trial has shown that the boat was going well on the water and the measurement equipment in a safe condition. 
Pembentukan Daftar Stopword Menggunakan Term Based Random Sampling Pada Analisis Sentimen Dengan Metode Naïve Bayes (Studi Kasus: Kuliah Daring Di Masa Pandemi) Rinandyaswara, Raditya; Sari, Yuita Arum; Furqon, Muhammad Tanzil
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 9 No 4: Agustus 2022
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2022934707

Abstract

Stopword Removal merupakan bagian dari tahapan preprocessing teks yang bertujuan untuk menghapus kata yang tidak relevan didalam suatu kalimat berdasarkan daftar stopword. Daftar stopword yang biasa digunakan berbentuk digital library yang daftarnya sudah tersedia sebelumnya, namun tidak semua kata-kata yang terdapat didalam digital library merupakan kata yang tidak relevan dalam suatu data tertentu. Penelitian ini menggunakan daftar stopword yang dibentuk dengan algoritme Term Based Random Sampling. Dalam Term Based Random Sampling terdapat 3 parameter yaitu Y untuk jumlah perulangan pengambilan kata random, X untuk jumlah pengambilan bobot terendah dalam perulangan Y, dan L sebagai persentase jumlah stopword yang ingin digunakan. Sehingga penelitian ini ditujukan untuk mencari kombinasi terbaik dari 3 parameter tersebut serta membandingkan stopword Term Based Random Sampling dengan stopword Tala dan tanpa proses stopword removal dalam analisis sentimen tweet mengenai kuliah daring dengan menggunakan metode Naïve Bayes. Hasil evaluasi dengan stopword Term Based Random Sampling mendapatkan akurasi tertinggi dengan X, Y, L sebesar 10, 10, 40 dengan macroaverage accuracy sebesar 0,758, macroaverage precision sebesar 0,658, macroaverage recall sebesar 0,636, dan macroaverage f-measure sebesar 0,647. Berdasarkan hasil pengujian disimpulkan bahwa semakin besar X, Y, L maka semakin tinggi kemungkinannya untuk hasil evaluasi turun. Hasil pengujian membuktikan bahwa Term Based Random Sampling berhasil mendapatkan akurasi lebih tinggi dibandingkan dengan stopword Tala maupun tanpa menggunakan proses stopword removal. AbstractStopword Removal is part of the text preprocessing stage which aims to remove irrelevant words in a sentence based on the stopword list. The stopword list that is commonly used is in the form of a digital library whose list is already available, but not all words contained in the digital library are irrelevant words in certain data. This study uses a stopword list formed by the Term Based Random Sampling algorithm. In Term Based Random Sampling, there are 3 parameters, namely Y for the number of random word retrieval repetitions, X for the lowest number of weights in Y repetitions, and L as the percentage of the number of stopwords you want to use. So this research is aimed at finding the best combination of these 3 parameters and comparing the Term Based Random Sampling stopword with the stopword tuning and without the stopword removal process in the analysis of tweet sentiment regarding online lectures using the Naïve Bayes method. The results of the evaluation with the Term Based Random Sampling stopword get the highest accuracy with X, Y, L of 10, 10, 40 with a macroaverage accuracy of 0.758, a macroaverage precision of 0.658, a macroaverage recall of 0.636, and a macroaverage f-measure of 0.647. Based on the test results, it is concluded that the greater the X, Y, L, the higher the probability that the evaluation results will decrease. The test results prove that Term Based Random Sampling is successful in obtaining higher accuracy than stopword tuning or without using the stopword removal process.