Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analisis Pendapatan Daerah Pada Sektor Pariwisata Pada Setiap Kota Di Sumatera Barat Dengan Pendekatan Regresi Data Panel Wikasanti Dwi Rahayu Wika; Aidina Fitra; Uqwatul Alma Wizsa
Jurnal Teknologika Vol 12 No 2 (2022): Jurnal Teknologika
Publisher : Sekolah Tinggi Teknologi Wastukancana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51132/teknologika.v12iNo 2.241

Abstract

Penelitian ini fokus untuk melihat pengaruh jumlah wisatawan domestik, jumlah penginapan dan objek wisata terhadap Pendapatan Asli Daerah (PAD) yang akan menunjang perekonomian tujuh kota di Sumatera Barat (Padang, Pariaman, Kota Solok, Padang Panjang, Sawahlunto, Payakumbuh, dan Bukittinggi). Pariwisata seharusnya mampu memberikan kontribusi positif bagi perekonomian Sumatera Barat yang dianugerahi keindahan alam berupa lautan, pegunungan, danau, dan lembah. Budaya Minangkabau yang khas dan turunannya seperti masakan, tarian, dan sebagainya menjadi nilai tambah daya tarik pariwisata Sumatera Barat. Pemerintah provinsi Sumatera Barat tentu harus mengetahui kekuatan dari daya tarik tersebut dengan mengkaji pengaruh jumlah objek wisata, penginapan, wisatawan, dan rumah makan terhadap peningkatan PAD.
Forecasting International Tourist Arrivals with SARIMA and Triple Exponential Smoothing for Post-Pandemic Tourism Recovery Wikasanti Dwi Rahayu Wika; Uqwatul Alma Wizsa; Aidina Fitra
NUANSA INFORMATIKA Vol. 19 No. 1 (2025): Nuansa Informatika 19.1 Januari 2025
Publisher : FKOM UNIKU

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25134/ilkom.v19i1.312

Abstract

The Covid-19 pandemic has significantly impacted the tourism sector, leading to a drastic decline in regional revenue derived from this industry. To accelerate the recovery of the tourism sector, reliable forecasting methods are required to estimate tourist arrivals. This paper presents the use of time series SARIMA and Triple Exponential Smoothing (Holt-Winters) methods to predict the number of international tourist arrivals in the post-pandemic period. The analysis reveals that the SARIMA method with ARIMA (2,0,1)(1,0,1)₅ parameters, which accounts for seasonal trends over a five-month period, provides the most accurate predictions. Evaluation is conducted using MAPE, MAE, and RMSE value. The predictions generated by these methods are expected to assist governments and tourism-related industries in developing promotion strategies, infrastructure planning, and optimal resource allocation.