Claim Missing Document
Check
Articles

Found 6 Documents
Search

Komparasi Pemilihan Platform Belanja Online Dengan Menggunakan Metode Simple Additive Weighting (SAW) Dan Profile Matching. Qorinul Ahlamiyah; Rani Irma Handayani; F. Lia Dwi Cahyanti
Bianglala Informatika Vol 10, No 2 (2022): Bianglala Informatika 2022
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/bi.v10i2.13181

Abstract

Abstrak - Perkembangan bisnis di Indonesia yang sangat pesat akhir-akhir ini adalah bisnis secara online. Belanja online atau e-commerce adalah salah satu cara berbelanja melalui media elektronik yaitu handphone, laptop, komputer dan lain sebagainya. Belanja online merupakan salah satu akses yang mudah untuk membeli segala kebutuhan karena pembeli dan penjual tidak perlu susah payah untuk bertemu langsung di toko. Pembeli bisa melihat barang yang diinginkan melalui media elektronik yang telah dihubungan oleh internet kemudian dapat memesan barang sesuai dengan pilihan lalu jika sudah sesuai maka pembeli melakukan pembayaran melalui transfer uang elektronik yang telah disediakan di online shop yang telah dipilih. Penelitian ini dibuat dengan menggunakan metode Simple Additive Weighting (SAW) dan metode Profile Matching. Penelitian ini dilakukan dengan mengumpulkan data dan hasil analisis untuk mendapatkan informasi yang harus disimpulkan. Dengan kriteria yang digunakan meliputi nilai kualitas, kepercayaan, kemudahan serta harga barang. Dari hasil pengumpulan data yang telah dilakukan, diperoleh hasil alternatif Shopee sebagai nilai tertinggi dengan perhitungan menggunakan metode SAW dan profile matching dengan nilai 0,95 dan 4,625. Selanjutnya untuk Tokopedia dengan nilai 0,89 dan 4,5. Selanjutnya Bukalapak dengan nilai 0,85 dan 4,375. Dan kemudian Lazada dengan nilai 0,81 dan 4,125. Bobot yang diberikan pada setiap kriteria mempengaruhi hasil akhir penentuan pemilihan aplikasi jasa online shop. Perubahan nilai bobot pada suatu kriteria juga akan mempengaruhi hasil akhir perhitungannya.Kata Kunci : Sistem Pendukung Keputusan, Pemilihan Aplikasi Online Shop, Simple Additive Weighting, Profile Matching Abstract  - The rapid development of business in Indonesia lately is online business. Online shopping or e-commerce is one way of shopping through electronic media, namely cellphones, laptops, computers and so on. Online shopping is one of the easiest ways to buy everything you need because buyers and sellers don't have to bother to meet in person at the store. The buyer can see the desired item through electronic media that has been connected to the internet and then can order the goods according to the choice and if it is appropriate, the buyer makes a payment via electronic money transfer that has been provided at the selected online shop. This research was made using the Simple Additive Weighting (SAW) method and the Profile Matching method. This research was conducted by collecting data and analysis results to obtain information that must be concluded. The criteria used include the value of quality, trustworthiness, convenience and the price of goods. From the results of data collection that has been carried out, the Shopee alternative results obtained as the highest value with calculations using the SAW and Profile matching methods with values of 0.95 and 4.625. Furthermore, for Tokopedia with a value of 0.89 and 4.5. Furthermore, Bukalapak with a value of 0.85 and 4.375. And then Lazada with a value of 0.81 and 4.125. The weight given to each criterion affects the final result of determining the selection of an online shop service application. Changes in the weight value on a criterion will also affect the final result of the calculation.Keywords: Decision Support System, Online Shop Application Selection, Simple Additive Weighting, Profile Matching
KLASIFIKASI DATA MINING DENGAN ALGORITMA MACHINE LARNING UNTUK PREDIKSI PENYAKIT LIVER F. Lia Dwi Cahyanti; Fajar Sarasati; Widi Astuti; Elly Firasari
Technologia : Jurnal Ilmiah Vol 14, No 2 (2023): Technologia (April)
Publisher : Universitas Islam Kalimantan Muhammad Arsyad Al Banjari

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31602/tji.v14i2.10093

Abstract

Liver merupakan organ tubuh manusia yang memiliki peranan sangat penting seperti mencerna, menyerap, membantu proses pencernaan makanan serta menghancurkan racun di dalam darah. Penyakit hati atau liver yang sudah akut sangat mempengaruhi fungsi-fungsi hati, penyakit hati dapat diketahui dari munculnya gejala klinis maupun fisik yang timbul pada pasien. Penelitian ini membahas tentang klasifikasi penyakit liver pada dataset ILPD yang diambil dari UCI Machine learning Repository menggunakan algoritma machine learning. Dataset terdiri dari 583 record data, 10 kriteria, dan 1 variable kelas berjenis multivariate. Penelitian ini menggunakan beberapa tahapan preprocessing yang dilakukan, diantaranya : Preprocessing Data Dan Eksplorasi Data, Penanganan missing value, feature selection, menerapkan feature correlation dan feature scaling, Analisis menggunakan Algoritma Machine learning. Berdasarkan hasil pengujian yang dilakukan dalam memperoleh nilai akurasi perhitungan klasifikasi menggunakan Algoritma Random Forest memiliki performa  keakuratan yang diukur dengan akurasi sebesar 78,63% sehingga disimpulkan akurasi tersebut lebih unggul dari algoritma lainnya dalam klasifikasi penyakit liver.
CLASSIFICATION OF POTATO LEAF DISEASES USING CONVOLUTIONAL NEURAL NETWORK Elly Firasari; F. Lia Dwi Cahyanti
Jurnal Techno Nusa Mandiri Vol 20 No 2 (2023): Techno Nusa Mandiri : Journal of Computing and Information Technology Period of
Publisher : Lembaga Penelitian dan Pengabdian Pada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/techno.v20i2.4655

Abstract

Potatoes are an agricultural product that has the fourth highest content of wheat flour after corn, wheat, and rice. Although potatoes play a critical role in agriculture, this crop is susceptible to various diseases and pests. There are several potato leaf diseases that are not yet known to farmers. Dry spot potato leaf disease (late blight) and late blight. If not treated, this disease on potato leaves will spread to the stem and reduce crop yields, causing crop failure. By using technology in the form of digital image processing, this problem can be overcome. This research proposes an appropriate method for detecting disease in potato leaves. Classification will be carried out in three classes, namel, Early Blight, Healthy and Late Blight using the Deep Learning method of Convolutional Neural Network (CNN). The data used comes from an online dataset via the kaggle.com page with the file name Potato Disease Leaf Dataset (PLD) totaling 3251 training datasets which are then divided into training, testing, and validation. The processes carried out are image pre-processing, image augmentation, then image processing using a Convolutional Neural Network (CNN). In the classification process using the CNN method with RMSprop optimizer, the accuracy was 97.53% with a loss value of 0.1096.
Perancangan Sistem Point of Sales (POS) Berbasis Web Untuk Optimalisasi Layanan pada Shortcut Barbershop Ngatini Ngatini; F. Lia Dwi Cahyanti
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 7, No 6 (2024): Desember 2024
Publisher : Program Studi Teknik Komputer, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v7i6.8260

Abstract

Abstrak - Barbershop adalah inovasi dalam mode. Awalnya dikenal sebagai pangkas rambut di jalan raya atau hanya tempat cukur, mereka sekarang lebih luas dengan layanan dan alat yang lebih baik. Shortcut Barbershop merupakan sebuah barbershop yang berdiri di bawah naungan CV Bumi Ricky Cemerlang. Dalam melakukan operasional, masih menggunakan proses manual dalam pencatatan transaksi penjualan sehinga menyebabkan kesalahan dalam perhitungan harga atau jumlah barang, yang pada akhirnya dapat mengakibatkan kerugian dan ketidakpuasan pelanggan. Tanpa sistem yang terotomatisasi, manajemen inventaris dapat menjadi sulit dilakukan dengan efisien. Kekurangan stok atau dalam memperkirakan kebutuhan persediaan dapat mengganggu operasional dan menghambat kemampuan bisnis untuk memenuhi permintaan pelanggan. Metode yang digunakan adalah Rapid Application Development (RAD). Hasil pembahasan dari penelitian dan pengujian sistem, maka dapat disimpulkan bahwa sistem yang dibangun dapat memudahkan manajemen transaksi secara real-time dan terintegrasi. Sistem ini menyediakan fitur manajemen inventaris yang membantu dalam pelacakan stok barang dan kebutuhan peralatan. Informasi untuk stok yang hampir habis membantu dalam pengelolaan persediaan yang lebih baik.Kata kunci: Point of Sales, RAD, Web Abstract - Barbershop is an innovation in fashion. Originally known as high street hair clippers or just barbershops, they are now broader with better services and tools. Shortcut Barbershop is a barbershop that was founded under the auspices of CV Bumi Ricky Cemerlang. In carrying out operations, manual processes are still used in recording sales transactions, which causes errors in calculating prices or quantities of goods, which in the end can result in losses and customer dissatisfaction. Without an automated system, inventory management can be difficult to do efficiently. Stock shortages or underestimating inventory needs can disrupt operations and hinder a business's ability to meet customer demand. The method used is Rapid Application Development (RAD). The results of the discussion from research and system testing, it can be concluded that the system built can facilitate real-time and integrated transaction management. This system provides inventory management features that help in tracking stock and equipment requirements. Information for low stock helps in better inventory management.Keywords: Point of Sales, RAD, Web
Sistem Informasi Penjualan Berbasis WEB Pada UKM Rukun Makmur Tlingsing F. LIa Dwi Cahyanti; Elly Firasari; Umi Khultsum
NUANSA INFORMATIKA Vol. 18 No. 2 (2024): Nuansa Informatika 18.2 Juli 2024
Publisher : FKOM UNIKU

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25134/ilkom.v18i2.126

Abstract

In today's globalized era, rapid advancements in information systems have had a profound impact on business operations. UKM Rukun Makmur, based in Tlingsing Village, Cawas District, Klaten Regency, specializes in producing woven lurik fabric and faces several challenges. These include limited traditional marketing methods such as brochures and catalogs, which restrict sales efficiency and outreach. Additionally, there is a lack of staff familiarity with internet tools, hindering business growth. The use of traditional weaving equipment also limits production capacity. Insufficient digital marketing efforts have resulted in low brand visibility and below-target sales revenue for this SME. Thus, it is essential to develop a web-based sales information system for UKM Rukun Makmur Tlingsing to expand product marketing reach and boost sales. This system will be built using the waterfall methodology, encompassing phases such as requirements analysis, design, implementation, and testing. Open-source tools like XAMPP, MySQL, and PHP will be employed, ensuring accessibility for all users
The Implementation of the TOPSIS Method in Determining Stunting Toddlers: Penerapan Metode TOPSIS dalam Penentuan Balita Stunting Umi Khultsum; F. Lia Dwi Cahyanti; Elly Firasari
NUANSA INFORMATIKA Vol. 19 No. 2 (2025): Nuansa Informatika 19.2 Juli 2025
Publisher : FKOM UNIKU

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25134/ilkom.v19i2.400

Abstract

Stunting is a growth disorder in children due to chronic malnutrition and recurrent infections, especially in the first 1,000 days of life. Assessment of stunting status that only relies on height and weight measurements is considered ineffective because it does not cover all aspects that affect a child's nutritional status. At Posyandu Bougenvile, stunting identification is still done manually and is at risk of causing errors in decision making. This study aims to develop a web-based Decision Support System (DSS) using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method to assist Posyandu cadres in determining toddler stunting status quickly, accurately, and efficiently. This system processes data from four main anthropometric indicators, namely Height/Age, Weight/Age, Weight/Age, and BMI/Age. The results of the system calculations show agreement with manual calculations, which proves that the system is working optimally. An example of the results shows that toddlers with code A1 (Rafasya Malik) have the lowest preference value of 0, followed by A4 (Ihsan Dwi Hanggoro) with a value of 0.4022149 which is included in the high stunting risk category. This system has proven to be able to help Posyandu cadres in prioritizing the handling of at-risk toddlers, as well as supporting the stunting monitoring process in a more structured and data-based manner.