Claim Missing Document
Check
Articles

Found 3 Documents
Search

NiO ELECTRO-DEPOSITION TECHNIQUE OF γ-Al2O3 WASHCOAT ON FeCrAl SUBSTRATE BY USING SULPHAMATE TYPE SOLUTION Dafit Feriyanto; A. M. Leman; Andi Firdaus Sudarma; Dedik Romahadi; Hadi Pranoto
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 4, No 1 (2022)
Publisher : Universitas Mercu Buana, Prodi S2 Teknik Mesin

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (705.062 KB) | DOI: 10.22441/ijimeam.v4i1.15763

Abstract

Electro-deposition process to develop surface layer on the substrate material in Catalytic converter (CATCO) become interesting area due to that process was purposed to improve the physical properties of substrate material. Currently, precious metals such as Platinum (Pt), Palladium (Pd), and Rodium (Rd) were used due to excellent oxidation resistant but it limited and easily oxidized. Therefore, Nickel Oxide (NiO) catalyst used as electro-deposition material. NiO electro-deposition technique that called by EL was conducted by using NiO as cathode and FeCrAl as substrate and -Al2O3 as washcoat material. This technique was performed by  variation times of 15, 30, 45, 60 and 75 minutes, current density of 8 A/dm2. The results shows that Coating layer of NiO and  -Al2O3 has been developed on surface of FeCrAl substrate. The coating layer was increase the surface roughness which showed by surface morphology data that coated FeCrAl substrate has uneven surface and some particles has been embedded on that surface. The composition of raw material was consists of Fe for 74.13wt%,  Cr of 20.25 wt% and Al of 5.62 wt%. Meanwhile, for composition of EL samples was 52.56- 63.54wt% for Fe element, Al for 3.56-11.89 wt%, Cr for 14.97-18.56 wt%, O for 2.47-11.78 wt%, C for 8.33-11.85 wt%, Na for 0.11-0.48 wt%  and Ni for 0.17- 1.58 wt%.  Higher elements of the EL samples potential to improve the thermal stability at high temperature due to CATCO operate at high temperature of 600-8500C and in extreme condition.
IMPLEMENTATION OF THE FINITE ELEMENT METHOD IN SOLIDWORKS TO OPTIMIZE THE FRONT CAST WHEEL DESIGN FOR MOTORCYCLES Rizki Nur Afami Kurniawan; Dedik Romahadi; Muhamad Fitri; Md Radwanul Karim
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 4, No 3 (2022)
Publisher : Universitas Mercu Buana, Prodi S2 Teknik Mesin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v4i3.18794

Abstract

Cast wheel rims often experience damage that causes damage to the lip of the rim, or the spokes rupture if it supports the excessive load. The safety aspect is very important to be considered in the automotive industry because it involves the lives of passengers. Structural optimization of various vehicle components has shown that component weight strongly influences vehicle performance. Based on these problems, this research aims to design a lightweight cast wheel design model that can withstand a load of 535 N. So, it is necessary to make an analysis using a comparison of design models and material variations and static simulations using Solidworks 2018 software. The results sought are von mises, displacement, strain, a factor of safety, and produce a lightweight design. The simulation results on the three models are still safe in holding a load of 535 N because the value of the factor of safety is not less than 1. The results of the design mass with material variations are lighter than the original wheels.
INDUCED DRAFT FAN DOMINANT FREQUENCY DETECTION USING SHORT-TIME FOURIER TRANSFORM METHOD Dedik Romahadi; Wiwit Suprihatiningsih; Gian Villany Golwa; Mahesh Kumar
Jurnal Rekayasa Mesin Vol. 14 No. 2 (2023)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v14i2.1305

Abstract

Weak suction and large vibrations indicate an Induced Draft Fan (IDF) problem. The Fast Fourier Transform (FFT) method cannot be applied to non-stationary vibration signals. Therefore, this study aims to analyze non-stationary vibration signals for IDF vibration signals at start-up so that the source of damage to the IDF can be found. The research process begins with a brief measurement of both bearing locations with horizontal and axial axes. Processing of the vibration signal from the measurement using the FFT method and the Short Time Fourier Transform (STFT). Based on the STFT spectrogram graph for measurements on the horizontal and axial axes, the dominant frequency values are the same. The frequency with the largest amplitude value is at one RPM IDF or 25 Hz. High vibration at 1 RPM is a big indication that the IDF is experiencing unbalance.