Claim Missing Document
Check
Articles

Found 2 Documents
Search

Penerapan Kombinasi Metode Ridge Regression (RR) dan Metode Generalized Least Square (GLS) untuk Mengatasi Masalah Multikolinearitas dan Autokorelasi Nurdin, I; Sugiman, S; Sunarmi, S
Indonesian Journal of Mathematics and Natural Sciences Vol 41, No 1 (2018): April 2018
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Analisis regresi merupakan salah satu metode analisis data dalam statistika yang seringkali digunakan untuk mengkaji hubungan antara beberapa variabel dan meramal suatu variabel. Metode Generalized Least Square (GLS) merupakan salah satu metode yang digunakan untuk mengatasi masalah autokorelasi. Metode Ridge Regression (RR) merupakan salah satu metode yang digunakan untuk mengatasi masalah multikolinearitas. Tujuan penelitian ini adalah untuk menemukan model regresi terbaik dengan menggunakan metode RR dan metode GLS pada jumlah uang yang beredar.Tujuan lainnya yang ingin dicapai adalah menetapkan tetapan bias  untuk mengatasi masalah multikolinearitas, selanjutnya menentukan nilai koefisien autokorelasi  berdasarkan nilai , AR(1) residual dan Cochrane Orcutt Iterative Procedure serta dengan mentransformasikan variabel  dan . Hasil dari penelitian ini diperoleh nilai  dengan nilai VIF sebesar 4,6671 dan diperoleh persamaan model regresi berdasarkan nilai , AR(1) residual, dan Cochrane Orcutt Iterative Procedure. Model regresi berdasarkan nilai AR(1) residual merupakan model regresi terbaik karena mendekati selang  dengan nilai MSE 224506836,3 terkecil dan nilai  sebesar 72,3%.Regression analysis is a statistical method of data analysis that often used to examine the relationship between several variables and predict a variable. Method of Generalized Least Square (GLS) is one of the method that used to overcome the problem of autocorrelation. Methods Ridge Regression (RR) is one method used to solve the problem of multicollinearity. The purpose of this research is to determine the best regression model of the amount of money in circulation by using RR and GLS method. The other purpose is to establish constant bias  to overcome the problem of multicollinearity, then determine the coefficient score of autocorrelation  based on the value , AR (1) residuals and Cochrane Orcutt Iterative Procedure and by transforming the variabel  and . The results of this study were obtained value   with VIF value of 4.6671 and equation regression model based on value , AR (1) residuals, and Cochrane Orcutt Iterative Procedure.  The regression model based on value is the best regression model for AR(1) residual approaching the hose  with a MSE (Mean Square Error) value 224506836,3 and the value  amounted to 72.3%.
Kajian Eksperimental Unjuk Kerja Model Sistem Pembangkit Listrik Menggunakan Turbin Helik Bentuk Sudu NACA 0033 Sinaga, J B; Suudi, A; Susila, M D; Admiral, R; Sugiman, S
JURNAL MECHANICAL Vol 14, No 2 (2023): Jurnal Mechanical
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This paper presents an experimental study of a power generation system model that uses a helical turbine with NACA 0033 blades. The helical turbine has a diameter of 1 meter, a length of 1.2 meters, and three blades. Each blade has a chord length of 41.8 cm and an inclination angle of 62 degrees. Tests were conducted to harness the water flow energy in the Way Tebu irrigation canal in Banjar Agung Udik Village, Tanggamus Regency. The test results show that the power generation system model, operating at water flow velocities of 0.398 m/s, 0.491 m/s, and 0.548 m/s, generates electrical power outputs of 13.705 W, 20.987 W, and 34.63 W, with corresponding efficiencies of 36.22%, 32.74%, and 34.67%.Keywords: power plants helical turbine kinetic energy