Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Journal of Soft Computing Exploration

Developing a classification system for brain tumors using the ResNet152V2 CNN model architecture Rhomadhon, Syahruu Siyammu; Ningtias, Diah Rahayu
Journal of Soft Computing Exploration Vol. 5 No. 2 (2024): June 2024
Publisher : SHM Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52465/joscex.v5i2.372

Abstract

According to The American Cancer Society, in 2021 there were 24,530 cases of brain and nervous system tumors. The National Cancer Institute reports that there are approximately 4.4 new cases of brain tumors per 100,000 men and women per year. Brain tumors can be detected using magnetic resonance imaging (MRI), a scanning tool that uses a magnetic field and a computer to record brain images and is able to provide clear visualization of differences in soft tissue such as white matter and gray matter. However, this cannot be done optimally because it still relies on manual analysis, so it cannot classify brain tumor types on larger datasets with the potential for error and a low level of accuracy. To accurately determine the type of brain tumor, a better classification method is needed. The aim of this study is to determine the accuracy of brain tumor calcification using the deep learning model. In this study, the classification of brain tumor types was carried out using the ResNet152V2 convolutional neural network (CNN) model which has a depth of 152 layers. The dataset used in this study was 7,023 MRI images of brain tumors consisting of 1,645 meningiomas, 1,621 gliomas, 1,757 pituitary and 2,000 normal. Research results show an accuracy value of 94.44%, so it can be concluded that the ResNet152V2 model performs well in classifying brain tumor images and can be used as a medium for physicians to more accurately diagnose brain tumor patients more accurately.
Utilization of eye tracking technology to control lights at operating room Permana, Asyraf; Ningtias, Diah Rahayu
Journal of Soft Computing Exploration Vol. 5 No. 4 (2024): December 2024
Publisher : SHM Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52465/joscex.v5i4.502

Abstract

The development of technology for control systems is increasing, especially to help people with disabilities and facilitate the performance of health workers. Where it is required to maintain the level of sterilization of equipment in hospitals. Eye tracking technology in the last few decades has developed very rapidly. This control system using eye tracking technology can be done with eye movements for those who experience mobility problems. This research aims to develop a light control system through eye activity using the Mediapipe framework from Google. In this study, 2 lamps (A and B) were used, each with a light intensity of 10W. In lamp A, the light intensity can be controlled by turning the light on or off using the blink of the right eye and the blink of the left eye, while lamp B can adjust the intensity of the light by opening both eyes (right and left). Research on a lighting control system using the eye tracking method with an image processing system has been successfully carried out. All data generated is based on activity, distance, eye position on the camera and differences in participant backgrounds. Apart from that, a system that can work well means consistent results are obtained. However, based on distance, the system can read with precision at distances of 50 cm and 60 cm.
Identification of lung cancer using gray level co-occurrence matrix (GLCM) and artificial neural network with backpropagation algorithm Fauziah, Haniifah Hana; Ningtias, Diah Rahayu; Wahyudi, Bayu; Simanjuntak, Josepa ND
Journal of Soft Computing Exploration Vol. 6 No. 1 (2025): March 2025
Publisher : SHM Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52465/joscex.v6i1.543

Abstract

Air pollution is a problem that occurs in various countries, including Indonesia. One of the consequences of poor air quality due to air pollution is health problems in the lungs, one of which is lung cancer. According to WHO data, lung cancer caused 1.80 million deaths in 2020. This is due to limited services to identify lung cancer early, resulting in delays in treatment. This study aims to identify lung cancer using CT-Scan image processing. The identification method uses a Backpropagation Artificial Neural Network (ANN BP) with Gray Level Co-occurrence Matrix (GLCM) feature extraction. Preprocessing is carried out to improve image quality by removing noise using a median filter. Segmentation of preprocessing results using Otsu threshold. Texture features from segmentation can be calculated from the resulting GLCM, such as Angular Second Moment (ASM)/energy, contrast, correlation, Inverse Different Moment (IDM)/homogeneity, and entropy. These values ​​are obtained from angles of 0°, 45°, 90°, and 135°, and a distance between pixels of 2 pixels. Identification using ANN with Backpropagation algorithm. This study used images of normal lungs and lung cancer with 160 training data images and 40 test data images. The best test results were obtained with the best accuracy level of 92.5%.