Desy Wulandari Asfary Putri
Jurusan Sistem Informasi, Fakultas Ilmu Komputer Dan Teknologi Informasi, Universitas Gunadarma

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

COMPARISON OF ACCURACY PERFORMANCE K-NEAREST NEIGHBOR ALGORITHM AND SUPPORT VECTOR MACHINE FOR PREDICTING DEATH IN CONGESTIVE HEART FAILURE Isram Rasal; Dwi Widiastuti; Desy Wulandari Asfary Putri
INFOKUM Vol. 10 No. 5 (2022): December, Computer and Communication
Publisher : Sean Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Congestive heart failure or Congestive Heart Failure (CHF) is the number one cause of death in the world. There are approximately 5.7 million adults with heart failure in the United States and 550,000 new cases are diagnosed each year. This has encouraged a lot of research on heart failure, one of which is using the Machine Learning method to predict death from heart failure early. From these problems, the authors will conduct Machine Learning research using two different algorithm models, namely K-Nearest Neighbor (KNN) and Support Vector Machine (SVM). These two models will predict death due to heart failure. The dataset regarding the factors for diagnosing heart failure can be accessed widely and freely on the Kaggle website which is divided into two, namely data training and data testing then analysis and prediction are carried out, so that information is obtained in the form of an accuracy rate in predicting death in heart failure. Using this function also produces the accuracy of each model on the data that has been trained. Data taken were 299 patient data with 13 features or attributes, then divided into 239 training data and 60 test data. The value obtained is an accuracy of 85%. The accuracy obtained is more than 80% of the total data tested so that it can be used or implemented to classify heart failure.
Rancang Bangun Sistem Informasi Metrologi Abdus Syakur; Budi Setiawan; Desy Wulandari Asfary Putri
Jurnal Pengabdian Masyarakat dan aplikasi Teknologi (Adipati) Vol 1, No 2 (2022)
Publisher : Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Layanan metrologi dilakukan untuk melindungi konsumen dan produsen dalam hal memperoleh hak yang adil dalam transaksi perdagangan. Badan Metrologi sebagai pelaksana metrologi masih menghadapi kendala dalam pelaksanaan layanannya, saat ini pelayanannya baru mencapai 24,7% dari total peralatan metrologi yang digunakan. Kendala yang terjadi selain masalah sarana dan prasarana yang belum memadai juga karena proses pengambilan data metrologi masih dilakukan secara manual dengan menggunakan banyak dokumen kertas. Pada setiap elemen layanan, terdapat berbagai macam dokumen yang harus diisi secara manual dan pada akhirnya dokumen-dokumen tersebut akan diarsipkan secara terpisah. Arus data dan informasi ini belum terdokumentasi dengan baik, meskipun data keluaran dari proses ini akan diolah menjadi informasi metrologi yang akan digunakan oleh manajemen di atasnya dalam mengambil keputusan. Sistem Informasi Metrologi dikembangkan untuk mengatasi kendala yang ada di Badan Metrologi, selain mendukung kinerja Balai Metrologi serta untuk keberhasilan E-government. Pengembangan sistem informasi metrologi menggunakan metode System Development Life Cycle (SDLC) dengan pendekatan business process re-engineering untuk layanan metrologi.