Ayu Sri Rahayu
Universitas Buana Perjuangan Karawang, Karawang

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Pada Analisis Sentimen Spotify Ayu Sri Rahayu; Ahmad Fauzi; Rahmat Rahmat
Jurnal Sistem Komputer dan Informatika (JSON) Vol 4, No 2 (2022): Desember 2022
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v4i2.5398

Abstract

The Spotify app is a subject of interest to social networking communities with significant disagreements or sentiments. Sentiment Analysis is a solution to automatically categorize opinions or ratings into negative or positive opinions. The techniques used in this research are Support Vector Machines (SVM) and Naïve Baye. The advantages of Naïve Bayes are simple, fast and high accuracy. SVM, on the other hand, can identify different hyperplanes that maximize the margin between two different classes. The classification results of this study have two category labels, namely negative and positive. The resulting accuracy value indicates the best test model for sentiment classification cases. Accuracy is measured by the confusion matrix and the results show that the accuracy value of the SVM algorithm is 84% while the accuracy value of the Naïve Bayes algorithm is higher than SVM which is 86.4%.