Claim Missing Document
Check
Articles

Found 3 Documents
Search

Klasifikasi Otomatis Motif Tekstil Menggunakan Support Vector Machine Multi Kelas Ramadhani, Ramadhani; Arnia, Fitri; Muharar, Rusdha
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 1: Februari 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Tekstur merupakan pola atau motif tertentu yang tersusun secara berulang-ulang pada citra. Tekstur mudah dikenali/dikelompokkan oleh manusia, tetapi sulit bagi mesin. Klasifikasi tekstur secara otomatis berguna dan dibutuhkan pada banyak bidang seperti industri tekstil, pendaratan pesawat otomatis, fotografi dan seni. Pada industri tekstil, klasifikasi tekstur otomatis dapat meningkatkan efisiensi proses desain motif. Motif tekstil terdiri dari banyak kelompok, sehingga diperlukan metode klasifikasi multi kelas untuk mengelompokkan motif-motif tersebut. Artikel ini memaparkan kinerja tiga metode Support Vector Machine (SVM) multi kelas: One Against One (OAO), Directed Acyclic Graph (DAG) dan One Against All (OAA) pada klasifikasi motif dari citra tekstil, dimana Wavelet Gabor digunakan sebagai pengekstraksi fitur. Kinerja SVM diukur berdasarkan parameter akurasi dan fitur Gabor diekstraksi dengan skala dan orientasi yang berbeda. Tujuan penelitian ini adalah menentukan kinerja SVM dan pengaruh jumlah skala dan orientasi Gabor yang digunakan pada klasifikasi motif tekstil. Pada simulasi digunakan 120 citra tekstil yang terbagi menjadi tiga kategori motif: bunga, kotak dan polkadot. Akurasi pengelompokan SVM mencapai kisaran 90%-100%, bahkan untuk citra yang terpotong. Pengujian dengan k-fold validation menunjukkan bahwa SVM DAG lebih baik daripada SVM OAO dan SVM OAA, dengan akurasi mencapai 78%. AbstractTexture is a repetition of a specific pattern concatenation in an image. The Texture can be defined as a repetition of pattern in an image.  The texture is easy for the human to classify, but it is not easy for a machine. Automatic texture classification is useful and required in many fields such as textile industry, automatic aircraft landing, photography and art. In the textile industry, automatic texture classification can enhance the efficiency of motif designing process. The textile motif is various and should be grouped into more than two classes; therefore a multiclass classification is required. This article discusses the performance of multiclass Support Vector Machine (SVM): One Against One (OAO), Directed Acyclic Graph (DAG) and One Against All (OAA) in classifying textile motifs, in which the Gabor Filter was used to extract the texture features. The SVM performance was measured in terms of accuracy, while the Gabor features were extracted in a different combination of scales and orientations. The purpose of the work is to measure the SVM performance and determine the effect of using various Gabor scales and orientations in textile motifs classification. We used 120 textile images with three motifs: flower, boxes and polka dot. The SVM accuracy of 90%-100% was achieved; even for cropped textile images. Using the k-fold validation, the accuracy of SVM DAG was 78%, higher than those of SVM OAO and SVM OAA
Klasifikasi Kanker Payudara Menggunakan Citra Termal Berdasarkan Filter Gabor Putri, Listia Sukma; Arnia, Fitri; Muharar, Rusdha
Syntax Literate Jurnal Ilmiah Indonesia
Publisher : Syntax Corporation

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36418/syntax-literate.v9i4.15487

Abstract

Penelitian ini bertujuan untuk mengambil nilai fitur dari citra termal payudara melalui ekstraksi fitur Filter Gabor, dengan fokus pada mean, variance, kurtosis, skewness, dan entropi, serta untuk mengevaluasi kinerja tiga metode klasifikasi, yaitu K-Nearest Neighbor (KNN), Support Vector Machine (SVM), dan Artificial Neural Network (ANN). Kanker payudara merupakan masalah kesehatan yang serius, terutama bagi perempuan, karena potensial menyebabkan kematian. Dalam upaya mengurangi risiko kematian, penelitian dilakukan untuk mendeteksi kanker secara dini, termasuk menggunakan termografi. Metode ini memanfaatkan suhu dari objek untuk mendeteksi kanker, dimana pola suhu yang berbeda di area payudara yang terkena kanker dapat diamati karena peningkatan aliran darah. Penelitian menggunakan citra termal dari Database for Mastology Research (DMR) sebanyak 150 citra, dengan 108 citra sehat dan 42 citra sakit. Fitur tekstur diekstraksi menggunakan Filter Gabor dengan variasi skala dan sudut orientasi tertentu. Hasilnya diuji dengan beberapa metode klasifikasi, dimana ANN menunjukkan akurasi tertinggi yaitu 88.88%, diikuti oleh KNN dengan 86.66% dan SVM dengan 84.44%. Hasil ini menegaskan bahwa termografi bersama dengan ekstraksi fitur tekstur dan algoritma pembelajaran mesin dapat efektif dalam mendeteksi kanker payudara secara dini, menawarkan potensi diagnosis dini dan manajemen penyakit yang efektif.
Campaign on awareness of the negative impacts of cyberbullying [Kampanye kesadaran tentang dampak negatif dari cyberbullying] Elizar, Elizar; Zulkifley, Mohammad Asyraf; Muharar, Rusdha
Buletin Pengabdian Vol 4, No 1 (2024): Bull. Community. Serv.
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24815/bulpengmas.v4i1.37466

Abstract

Cyberbullying has evolved into a significant issue that frequently affects teenagers in today's society. This can be attributed to the fact that teenagers spenda significant amount of time on the internet, particularly on social media platforms. It is vital to take preventative measures against cyberbullying because these activities can have a significant influence on the mental health of teenagers. Awareness campaigns about the negative impacts of cyberbullying are one of the prevention measures through socialization to high school students regarding the dangers of cyberbullying actions. We hope that by participating in these activities, students will become more conscious of the need to take preventative measures against cyberbullying in the future.