Claim Missing Document
Check
Articles

Found 3 Documents
Search

ANALISIS ALGORITMA ADAPTIVE NEURO FUZZY INFERENCE SYSTEM PADA PENGENALAN POLA IKAN KOI MENGGUNAKAN RED, GREEN, BLUE, DAN HUE, SATURATION, VALUE IQBAL GIFFARI RITONGA; Rika Rosnelly; Pius Deski Manalu; Teresa Tamba; Kristine Wau
Device Vol 12 No 2 (2022): November
Publisher : Fakultas Teknik dan Ilmu Komputer (FASTIKOM) UNSIQ

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32699/device.v12i2.3998

Abstract

ANFIS adalah algoritma yang menggabungkan sistem fuzzy dengan sistem jaringan syaraf tiruan. ANFIS dapat membuat nilai masukan menjadi keluaran berdasarkan nilai yang sudah dilatihkan dalam bentuk fuzzy. ANFIS dapat digunakan dalam klasifikasi jenis ikan koi dengan melatih nilai red, green, blue, serta hue, saturation, value, dan biner untuk menghapus nilai background citra ikan koi. Pada penelitian ini digunakan 3 jenis dari ikan koi yaitu kohaku, sanke, dan showa. Data latih pada algoritma ini menggunakan 10 citra ikan koi kohaku, 10 citra ikan koi sanke, dan 10 citra ikan koi showa serta 6 data uji yang diambil dari 2 data latih dari setiap jenis ikan koi tersebut. Hasil Akurasi dari data latih menghasilkan 100% dan hasil Akurasi dari data uji menghasilkan 100%.
Klasifikasi Citra Cuaca Menggunakan Inception-V3 dan K-Nearest Neighbors Iqbal Giffari Ritonga; Rika Rosnelly; Pius Deski Manalu; Teresa Tamba; Kristine Wau
JURNAL TEKNOLOGI DAN ILMU KOMPUTER PRIMA (JUTIKOMP) Vol. 6 No. 2 (2023): Jutikomp Volume 6 Nomor 2 Oktober 2023
Publisher : Fakultas Teknologi dan Ilmu Komputer Universitas Prima Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34012/jutikomp.v6i2.4052

Abstract

Weather imagery has a crucial role in various sectors, such as aviation, maritime and agriculture. Weather conditions have a big impact on activities in these fields and greatly influence operations. Classifying weather images can be done by analyzing weather image data, which can be used to predict the type of weather that may occur. The results of these weather predictions have significant value in daily decision making in these various sectors. One method for classifying weather images can be done by first extracting weather image features using Inception-V3 which is then calculated using the K-Nearest Neighbors method. This research uses 1748 weather images with 4 categories to carry out training which produces a model with Accuracy 91%, F1 91%, Recall 91%, Precision 91%, and uses 8 weather images with 4 categories to carry out testing which produces classifications with all correct values. every image.
Implementasi Sistem Pendaftaran Berbasis Android dan Web pada Klinik Terapis Gigi dan Mulut Bambang Hariyadi, Amd.Kes Irawan, Devi; Yanuarti, Elly; Fitriyani; Wahyuningsih, Delpiah; Buulolo, Karuniaman; Wau, Kristine
Jurnal Informatika Vol 4 No 1 (2025): Jurnal Informatika
Publisher : LPPM Universitas Nias Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57094/ji.v4i1.2646

Abstract

The rapid advancement of information technology each year has driven digital transformation across various sectors, including healthcare services. One significant innovation is the digitalization of patient registration processes, which were previously conducted manually and often resulted in long queues and inefficiency. This study aims to develop and implement an Android and web-based registration system at the Dental and Oral Therapist Clinic of Bambang Hariyadi, Amd.Kes, in order to enhance efficiency and improve the patient experience. The system development method includes needs analysis through interviews and literature studies, user interface and system architecture design, implementation of both mobile and web applications, and evaluation based on user feedback. The application allows patients to independently register, schedule appointments, and receive periodic treatment reminders through their mobile devices or computers. Evaluation results indicate a significant improvement in registration efficiency, reduced waiting times, and increased patient satisfaction with the clinic’s services. Therefore, the implementation of this system is considered effective in supporting the digitalization of registration services in healthcare facilities, particularly in dental and oral therapy practices.