Claim Missing Document
Check
Articles

Found 3 Documents
Search

Andisol and microcrystalline cellulose from Typha angustifolia for auramine O adsorption Pranoto Pranoto; Venty Suryanti; Robi'atul Adawiyah
International Journal of Advances in Applied Sciences Vol 12, No 1: March 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijaas.v12.i1.pp27-36

Abstract

Andisol has a large surface area, is mesoporous, and contains the active groups' silanol (Si-OH) and aluminol (Al-OH). Besides andisol, cellulose is a good adsorbent, because microcrystalline cellulose has an active hydroxyl group (OH). The number of active adsorbent groups can be enhanced by chemically modifying the surface area (increment), or adding other materials. These modifications included alkaline modified-andisol with the addition of NaOH to increase pore size, cellulose hydrolysis with HCl to increase surface area, and andisol modification with the inclusion of other materials, mainly cellulose, to increase surface area. After the adsorption process is complete, the adsorption capacity of andisol-microcrystalline cellulose (AMS) to auramine O (AO) is known. As an adsorbent for AO, the surface area of BET andisol is 25.92 m2/g and the pore diameter is 14.40 nm, while the surface area of microcrystalline cellulose and AMS adsorbent are 26.60 m2/g and 18.60 m2/g, respectively. The maximum AO adsorption conditions by AMS were at pH 7, optimum at a contact time of 5 minutes, and maximum at a concentration of 40 mg/L with an adsorbent ratio of 1:1. The adsorption kinetics and isotherm more closely followed the pseudo second-order and Langmuir isotherm with an adsorption capacity of 5.24 mg/g.
Pemanfaatan Abu Sekam Padi sebagai Sumber Silika untuk Pembuatan Adsorben Ion Logam Cd(II) melalui Teknik Imprinted Ionic Sri Hastuti; Ilham Tri Utomo; Tri Martini; Pranoto Pranoto; Candra Purnawan; Abu Masykur; Atmanto Heru Wibowo
ALCHEMY Jurnal Penelitian Kimia Vol 17, No 1 (2021): March
Publisher : UNIVERSITAS SEBELAS MARET (UNS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/alchemy.17.1.44241.113-123

Abstract

Banyaknya pencemaran ion logam dalam perairan menjadi perhatian yang serius para peneliti, terutama untuk mengurangi keberadaan ion logam Cd yang terkandung dalam perairan dengan menggunakan adsorben. Oleh karena itu, penelitian ini bertujuan untuk membuat adsorben berbasis silika dengan kapasitas dan selektifitas tinggi terhadap ion Cd(II). Dalam penelitian ini, sintesis material imprinted ionic Cd(II) (SiO2-TMPDT-Cd-Imp) telah berhasil dilakukan menggunakan prekursor natrium silikat dari abu sekam padi. Proses sintesis diawali dengan pembuatan natrium silikat. Selanjutnya, trimetoksisililpropildietilentriamin (TMPDT), ion logam Cd(II) dan HCl ditambahkan hingga terbentuk gel. Gel dielusi dengan etilenadiaminatetraasetat (EDTA) untuk membentuk cetakan (template). Hasil karakterisasi dengan FTIR menunjukkan TMPDT terikat pada silika ditandai dengan munculnya vibrasi ulur dari C-H alkana pada 2908 cm-1 dan vibrasi tekuk gugus N-H pada 1471 cm-1.  Karakterisasi dengan Surface Area Analyzers (SAA) menunjukkan bahwa material tersebut memiliki luas permukaan sebesar 12,674 m2/g, volume pori total sebesar 0,017 cc/g, dan jari-jari pori rerata sebesar 18,783 Å. Karakterisasi dengan SEM-EDX memperlihatkan adanya unsur C dan N pada SiO2-TMPDT-Cd-Imp. Kondisi optimum adsorpsi ion logam Cd(II) oleh SiO2-TMPDT-Cd-Imp terjadi  pada pH 6,  waktu kontak 10 menit dan konsentrasi awal sebesar 10 ppm. Model kinetika adsorpsi ion logam Cd(II) pada SiO2-TMPDT-Cd-Imp mengikuti pseudo orde 2. Proses adsorpsi SiO2-TMPDT-Cd-Imp cenderung mengikuti isoterm Freundlich dengan nilai  faktor heterogenitas (n) sebesar 1,617 dan konstanta Freundlich (KF) sebesar 2,768. Kapasitas adsorpsi maksimum untuk Langmuir (qm) sebesar 19,16 mg/g. Urutan selektifitas (K) ion logam Cd(II) terhadap ion logam lain pada SiO2-TMPDT-Cd-Imp adalah Cd-Pb<Cd-Ni<Cd-Co.Utilization of Rice Husk Ash as a Silica Source for the Preparation of Cd (II) Metal Ion Adsorbents through Imprinted Ionic Technique. The amount of metal ion contamination in the waters is a serious concern for researchers, especially in reducing the presence of Cd metal ions contained in waters by using adsorbents. Therefore, this study aims to make a silica-based adsorbent with high capacity and selectivity to Cd (II) ions. In this research, the synthesis of imprinted ionic Cd (II) (SiO2-TMPDT-Cd-Imp) was successfully carried out using sodium silicate precursor from rice husk ash. The synthesis process begins with the production of sodium silicate. Furthermore, trimethoxysylpropildethylentriamine (TMPDT), metal ion Cd(II) and HCl were added to form a gel. The gel was eluted with ethylenediaminatetraacetate (EDTA) to form a template. The FTIR analysis showed that the binding of TMPDT to silica was indicated by the appearance of stretching vibrations C-H alkanes at 2908 cm-1and bending vibrations of N-H groups at 1471 cm-1. The Surface Area Analyzers (SAA) data showed that the material had a surface area of 12.674 m2/g, total pore volume of 0.017 cc/g, and average pore radius of 18.783 Å. Further characterization using SEM-EDX showed the presence of elements of C and N in SiO2-TMPDT-Cd-Imp. The optimum conditions for adsorption of Cd(II) metal ions by SiO2-TMPDT-Cd-Imp occurred at pH 6, the contact time of 10 minutes, and the initial concentration of 10 ppm. The adsorption kinetics model of Cd(II) metal ion on SiO2-TMPDT-Cd-Imp follows a pseudo second order. The adsorption process of SiO2-TMPDT-Cd-Imp follows the Freundlich isotherm with a heterogeneity factor value (n) of 1.617 and a Freundlich constant (KF) of 2.768. The maximum adsorption capacity for Langmuir (qm) is 19.16 mg/g. The selectivity (K) metal ion Cd(II) to other metal ions in SiO2-TMPDT-Cd-Imp is Cd-Pb<Cd-Ni<Cd-Co.
Adsorben Berbasis Campuran Andisol/Zeolit/Karbon Aktif untuk Penjernihan Air Gambut Devi Asriani; Pranoto Pranoto; Edi Pramono; Ozi Adi Saputra
ALCHEMY Jurnal Penelitian Kimia Vol 21, No 1 (2025): March
Publisher : UNIVERSITAS SEBELAS MARET (UNS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/alchemy.21.1.85539.138-148

Abstract

Andisol, karbon aktif, dan zeolit memiliki luas permukaan, porositas, dan kapasitas tukar ion yang efektif dalam menyerap kontaminan air. Penelitian ini bertujuan untuk mempelajari pembuatan adsorben berbasis andisol/zeolite/active carbon dilanjutkan dan kinerja adsorpsi serta parameter kinetika adsorpsinya untuk penjernihan air gambut. Tanah andisol dan zeolit diaktivasi dengan larutan NaOH 3 M dan komposisi tanah andisol, zeolit, dan karbon aktif divariasikan dengan perbandingan berat 100:0:0; 0:100:0; 0:0:100; 50:25:25; 25:50:25; dan 25:25:50 (b/b). Data menunjukkan kapasitas adsorpsi terbesar dihasilkan oleh komposisi tanah andisol:zeolit:karbon aktif pada komposisi 25:50:25 yaitu 39,67 mg/g dengan persentase penghilangan sebesar 81,72%. Isoterm adsorpsi mengikuti isoterm Redlich-Peterson. Analisis kinetika menunjukkan bahwa adsorpsi mengikuti model kinetika pseudo orde dua dengan konstanta laju adsorpsi sebesar 0,32 g∙mg-1min-1 dan qe sebesar 5,38 mg/g. Berdasarkan hasil tersebut campuran tanah andisol/zeolite/karbon aktif berpotensi digunakan sebagai absorben dalam penjernihan air gambut.Andisol/Zeolite/Active Carbon-based Adsorbent for Peat Water Treatment. Andisol, Activated Carbon, and Zeolite have a high specific surface area, porosity, and ion exchange capacity, effectively absorbing water impurities. This study aims to study the andisol/zeolite/active carbon-based adsorbent preparation and its adsorption capacity for peat water treatment. Andisol soil and zeolite were activated with NaOH 3 M solution and the composition of Andisol Soil/Zeolite/Activated Carbon were varied of 100:0:0; 0:100:0; 0:0:100; 50:25:25; 25:50:25; and 25:25:50 (wt%). Data shows that the largest adsorption capacity obtained for Andisol/Zeolite/Activated Carbon composition of 25:50:25 (wt%) of 39.67 mg/g and 81.72% for removal percentage. The isotherm adsorption followed Redlich-Peterson isotherm. The kinetics analysis showed that the adsorption followed the pseudo-second-order kinetics model with an adsorption rate constant of 0.32 g∙mg-1min-1 and qe of 5.38 mg/g. Based on these results, the mixture of andisol soil/zeolite/activated carbon has the potential to be used as an absorbent in peat water purification.