Winda Maulidina Nurrohmah
Universitas Multimedia Nusantara

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Enterprise Resource Planning (ERP) SAP Business One Evaluation and Improvement Recommendation using Customized Odoo Winda Maulidina Nurrohmah; Jansen Wiratama
Ultima InfoSys : Jurnal Ilmu Sistem Informasi Vol 13 No 2 (2022): Ultima InfoSys : Jurnal Ilmu Sistem Informasi
Publisher : Universitas Multimedia Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31937/si.v13i2.2802

Abstract

The goal of this research is to carry out and understand the evaluation of the success rate on SAP Business One, and the results of the evaluation are developed into the configuration and customization activities of the Odoo ver 15.0 open-source ERP system, because they do not have access rights to perform customization in the SAP Business One system. As a result, Odoo is one of the open-source ERP systems that can accommodate research recommendations and outcomes. The goal of this research is to determine the issues that arise throughout the company's use of the SAP Business One system. It is then anticipated to be a solution to company difficulties and to suit the firm's needs.
CONTINUANCE INTENTION OF AI-BASED CHATBOT SERVICES IN HIGHER EDUCATION: EVIDENCE FROM INDONESIA Winda Maulidina Nurrohmah; Prio Utomo; Johny Natu Prihanto
Jurnal Muara Ilmu Ekonomi dan Bisnis Vol. 9 No. 2 (2025): Jurnal Muara Ilmu Ekonomi dan Bisnis
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat, Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24912/jmieb.v9i2.35384

Abstract

Chatbot berbasis Kecerdasan Buatan (Artificial Intelligence/AI) semakin banyak digunakan di pendidikan tinggi untuk meningkatkan layanan mahasiswa. Namun, masih sedikit kajian yang meneliti faktor-faktor yang mendorong keberlanjutan penggunaan teknologi ini. Lambatnya response oleh layanan kemahasiswaan mendorong pemahaman lebih dalam mengenai determinan niak belernajutan dalam mempergunakan chatbot berbasi AI dengan menerapkan kerangka Technology Continuance Theory (TCT). Penelitian ini mempergunakan pendekatan kuantitatif dengan metode sampling purposive dimana data survei dikumpulkan dari 294 mahasiswa dan dianalisis menggunakan Partial Least Squares–Structural Equation Modeling (PLS-SEM). Hasil penelitian menunjukkan bahwa kualitas informasi berpengaruh signifikan terhadap persepsi kemudahan penggunaan, sementara kualitas sistem meningkatkan konfirmasi dan persepsi kegunaan. Namun, kualitas layanan tidak berpengaruh signifikan terhadap persepsi kegunaan. Baik persepsi kegunaan maupun kemudahan penggunaan terbukti berperan penting dalam mendorong niat keberlanjutan penggunaan VARA. Secara teoretis, penelitian ini memperluas penerapan TCT dalam konteks pendidikan tinggi dengan menunjukkan bagaimana kualitas informasi dan kualitas sistem secara bersama-sama membentuk niat keberlanjutan penggunaan. Secara praktis, temuan ini memberikan arahan bagi universitas untuk meningkatkan desain chatbot melalui keakuratan, keandalan, dan kemudahan penggunaan informasi. Penguatan faktor-faktor tersebut sangat penting untuk mendukung transformasi digital yang berkelanjutan dalam layanan mahasiswa.   Artificial Intelligence (AI)-based chatbots are increasingly being adopted in higher education to enhance the quality of academic services. However, research on the factors influencing the sustained use of these technologies remains limited. This study aims to identify the determinants of students’ continuance intention to use AI-based chatbots by applying the Technology Continuance Theory (TCT) framework. This quantitative research used a purposive sampling method, where data were collected from 294 students and analyzed using Partial Least Squares structural equation modeling (PLS-SEM). The results indicate that information quality significantly influences perceived ease of use, whereas system quality enhances both confirmation and perceived usefulness. In contrast, service quality had no significant effect on perceived usefulness. Perceived usefulness and ease of use are key factors in shaping students’ intention to continue using chatbots. This study extends the application of TCT in higher education by demonstrating how information and system quality jointly influence continuance intention. In practice, the results can guide universities in improving chatbot design by ensuring accuracy, reliability, and usability. Strengthening these elements is vital for sustaining the digital transformation of student services.