p-Index From 2020 - 2025
7.219
P-Index
This Author published in this journals
All Journal Jurnal Simetris Elkom: Jurnal Elektronika dan Komputer Prosiding SNATIF InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan Syntax Literate: Jurnal Ilmiah Indonesia Jurnal SOLMA JOURNAL OF APPLIED INFORMATICS AND COMPUTING JURNAL MANAJEMEN INFORMATIKA (JUMIKA) Jurnal DISPROTEK Jurnal Nasional Komputasi dan Teknologi Informasi JUTEKIN (Jurnal Manajemen Informatika) Jurnal Abdimas PHB : Jurnal Pengabdian Masyarakat Progresif Humanis Brainstorming Jurnal SITECH : Sistem Informasi dan Teknologi Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi JTIM : Jurnal Teknologi Informasi dan Multimedia JATI (Jurnal Mahasiswa Teknik Informatika) Abdimas: Jurnal Pengabdian Masyarakat Universitas Merdeka Malang E-Link: Jurnal Teknik Elektro dan Informatika JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) Jurnal Sistem Komputer dan Informatika (JSON) Dinamika Informatika: Jurnal Ilmiah Teknologi Informasi Indonesian Journal of Technology, Informatics and Science (IJTIS) Jurnal Pendidikan dan Teknologi Indonesia Jurnal Dialektika Informatika (Detika) Journal La Multiapp JAST Muria Jurnal Layanan Masyarakat Jurnal Pengabdian Masyarakat Intimas (Jurnal INTIMAS): Inovasi Teknologi Informasi Dan Komputer Untuk Masyarakat Biner : Jurnal Ilmiah Informatika dan Komputer Nusantara Journal of Computers and its Applications SmartComp Science Information System and Technology INOVTEK Polbeng - Seri Informatika JuTISI (Jurnal Teknik Informatika dan Sistem Informasi) Jurnal Bina Informatika dan Komputer (BINER)
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : INOVTEK Polbeng - Seri Informatika

Implementation of Convolutional Neural Network Algorithm in Recyclable Waste Recognition to Support Environmental Management Yuliana Fitriani; Evanita, Evanita; Akbar Riadi, Aditya
INOVTEK Polbeng - Seri Informatika Vol. 10 No. 2 (2025): Juli
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/drcjhg64

Abstract

Waste remains one of the unresolved environmental problems, primarily due to ineffective waste management in sorting and recycling processes. Many individuals are unaware of or do not have the time to identify recyclable types of waste. This study aims to develop a web-based system capable of automatically classifying waste types to support raising public awareness of the importance of recycling. The method used is a CNN with a total of 1,800 images divided into six classes: glass, paper, metal, plastic, organic, and residual. The dataset is split into 1,296 images for training, 144 for validation, and 360 for testing. Unlike previous studies that classified only two to three types of waste or were not web-based, this system combines classification of six categories with an interactive web interface that can be directly used by the public. The results show that the developed model achieved an accuracy of 90%, with the best performance in classifying organic waste. However, the model still has limitations such as sensitivity to variations in lighting, varying image capture angles, and visual similarities among certain waste types that can affect classification accuracy. These findings indicate that the proposed system has the potential to help the community manage waste more effectively and sustainably.