Claim Missing Document
Check
Articles

Found 3 Documents
Search

Upaya Upaya Meningkatkan Keaktifan Belajar Peserta Didik Kelas V Dengan Menggunakan Metode Think Pair Share Di MI Raudhotul Jannah Salsabilla, Tiara; Ramli, Rizal; Edwid Nivacindera, Syellen; M. Makbul; Aini Farida, Nur
Tarbawi Vol 9 No 1 (2024): Vol. 9 No. 1 (2024): Jurnal Peneltian Tarbawi: Jurnal Pendidikan Islam dan Isu-is
Publisher : Fakultas Tarbiyah Institut Agama Islam Hamzanwadi Pancor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37216/tarbawi.v9i1.1481

Abstract

Tujuan dari penelitian pelajaran ini adalah untuk mendorong aktivitas dan Siswa memperoleh keterampilan kolaborasi belajar pada siswa kelas 5 di MI Raudhotul Jannah. Model Think Pair Share (TPS) digunakan dalam metodologi penelitian Tindakan Kelas (PTK). Tahap perencanaan merupakan bagian dari proses penelitian, mengamati dan memikirkan kembali. informasi yang dikumpulkan melalui pendokumentasian dan observasi. Temuan-tamuan ini menunjukkan bahwa kerjasama dan keaktifan siswa mengalami peningkatan. Pengamatan mendukung hal ini disetiap siklusnya menjadi lebih besar secara signifikan. Pada siklus awal siswa yang pasif cenderung berkurang menjadi 26% dari sebelumnya 45% dan siswa yang lumayan aktif meningkat menjadi 13% dari sebelumnya 23%, siswa yang aktif meningkat menjadi 36% dari sebelumnya 20% dan siswa yang aktif meningkat menjadi 25% dari 12%, maka dari itu terjadi peningkatan efektivitas pembelajaran ditinjau dari keaktifan siswa. Partisipasi siswa dalam siklus kedua mengalami peningkatan keaktifan dalam pembelajaran Pada siklus kedua, siswa mengalami peningkatan keaktifan dalam pembelajaran hingga 94%. Berdasarkan pada temuan penelitian, bisa dikatakan​​​​​ bahwa menggunakan model pembelajaran​ Think Pair Share (TPS) mampu mendorong kerjasama dan tingkat aktivitas belajar siswa di kelas 5 MI Raudhotul Jannah.
Pengaruh Sistem Reward dan Punishment Terhadap Peningkatan Kualitas Pelayanan di Kantor BPJS Kesehatan Ramli, Rizal; Nusu, Olgha S.
Jurnal Ekonomi, Manajemen, Ilmu Sosial dan Politik Vol. 1 No. 3 (2024): Jurnal Ekonomi, Manajemen, Ilmu Sosial dan Politik
Publisher : CV. Dalle’ Deceng Abeeayla

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.69623/j-emspol.v1i3.21

Abstract

This research aims to determine the influence of the reward and punishment system on improving service quality at the Gorontalo Province Health BPJS Office. The analytical method used is a quantitative method, with primary data sources and secondary data and uses a deductive approach. The population in this study were all employees of the BPJS Health Office of Gorontalo Province with a total of 42 respondents. The sampling technique used a saturated sampling technique. Based on the results of the analysis, it can be seen that the t count of the Reward Variable is obtained t count 5.419 > t table 1.682 and with a significance level of 0.000 < 0.05, so in this case the Ha1 hypothesis is accepted, which means that Rewards have a significant effect on improving the quality of service at the Gorontalo Province Health BPJS Office. Meanwhile, giving punishment has no significant effect on improving the quality of services at the Gorontalo Province BPJS Health Office. This is proven by the tcount of 0.311 which is smaller than the ttable value of 1.682 indicating a significance level value of 0.757 which is greater than 0.05, so the hypothesis (Ha2) is rejected. which means that the Punishment system has no significant effect on the level of Service Quality at the Gorontalo Province Health BPJS Office. Based on the results of the ANOVA test, the calculated F value was 10.535 with a significance level of 0.000.
Classification of Rice Leaf Diseases Using Support Vector Machine with HSV and GLCM-Based Feature Extraction Ramli, Rizal; Evanita, Evanita; Akbar Riadi, Aditya
Journal of Applied Informatics and Computing Vol. 9 No. 5 (2025): October 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i5.10403

Abstract

This study aims to classify rice leaf diseases using the Support Vector Machine (SVM) algorithm based on image processing and feature extraction. A total of 600 rice leaf images were collected, each representing one of five disease types: bacterial blight, leaf smut, leaf blast, brown spot, and hispa. The images underwent preprocessing, including resizing, background removal, and feature extraction using HSV and GLCM methods. Extracted features were then used to train and test an SVM classification model. The evaluation using confusion matrix showed an overall accuracy of 83%, with class-specific F1-scores ranging from 0.72 to 0.90. These results indicate that SVM is effective in classifying rice leaf diseases and can potentially assist farmers in early disease detection to reduce crop loss.