Rudi Rusdiah, Rudi
Unknown Affiliation

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Penerapan Data Mining Dengan Metode Naïve Bayes Dan Learning Vector Quantization Credit Rating Dalam Memprediksi Kelayakan Pemberian Kredit Oleh PT. BPR Lebak Sejahtera Rianto, Muhammad; Rusdiah, Rudi; Ichwan, Hidayatul
Jurnal Teknologi Informasi RESPATI Vol 17, No 1 (2022)
Publisher : Universitas Respati Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35842/jtir.v17i1.443

Abstract

INTISARIPihak bank dalam memberikan pinjaman perlu melaksanakan credit analisis evaluasi approval terlebih dahulu supaya resiko yang timbul dari pemberian kredit kepada calon debitur tidak terlalu besar. Data mining merupakan teknik yang memanfaatkan data dengan jumlah yang besar untuk mendapatkan informasi atau data yang berharga untuk mengambil keputusan yang penting. Data mining juga telah terbukti digunakan dalam perbankan yang mengklasifikasikan data yang berguna dan berukuran besar dalam melakukan big data dan analysis. Dalam penelitian ini studikasus yang dilakukan pada data debitur Bank PT. BPR Lebak Sejahtera Kabupaten Lebak dengan menggunakan model Naive Bayes (NBC) & Learning Vector Quantization. Dengan menggunakan teknologi di bidang data mining yang mengoptimasi proses pencarian informasi prediksi dalam basis data yang besar, serta menemukan pola-pola yang tidak diketahui sebelumnya. Naïve Bayes memprediksi probabilitas di masa depan berdasarkan pengalaman di masa sebelumnya dengan mempelajari korelasi hipotesis yang merupakan label kelas yang menjadi target pemetaan dalam klasifikasi dan evidence yang merupakan fitur-fitur yang menjadi masukan dalam model klasifikasi.  Pengolahan data berbasis data mining tersebut diharapkan dapat digunakan sebagai alat bantu dalam memprediksikan kelayakan kredit yang memperkirakan layak atau tidaknya pemohon atau nasabah untuk diberikan kredit..Kata kunci— Data Mining, Naïve Bayes, Learning Vector Quantization , Bank, Kredit. ABSTRACTThe bank in providing loans needs to predict the feasibility of applying for credit in advance so that the risks arising from lending to prospective debtors are not too great. Data mining is a technique that utilizes a large amount of data to obtain valuable information or data to make important decisions. Data mining has also been shown to be used in banks that classify useful and large-sized data. In this study, the case study was conducted on the data of the bank debtors. PT. BPR Lebak Sejahtera District using Naive Bayes (NBC) Learning Vector Quantization model. By using technology in the field of data mining that optimizes the process of searching for predictive information in large databases, as well as finding previously unknown patterns. Naive Bayes predicts future probabilities based on previous experience by studying the correlation of hypotheses that are class labels that are the target of mapping in classification and evidence which are features that are input in the classification model. Data mining-based data processing is expected to be used as a tool in predicting creditworthiness that estimates whether or not the applicant or customer is eligible for credit. Keywords— Data Mining, Naïve Bayes, Learning Vector Quantization, Bank, Credit.
AI-BASED ALGORITHMS FOR NETWORK SECURITY: TRENDS, PER-FORMANCE, AND CHALLENGES Marison, Sihol; Silvanus, Silvanus; Rusdiah, Rudi
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) Vol 11, No 2 (2025): Maret 2025
Publisher : Universitas Royal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i2.3699

Abstract

Abstract: The advancement of network security faces growing challenges as cyberattacks become more sophisticated. Traditional rule-based systems struggle with zero-day attacks and obfuscation techniques. This study examines the development trends of AI-based algo-rithms, particularly machine learning and deep learning, in threat detection. A literature review evaluates AI-driven approaches, including support vector machines, random for-est, deep neural networks, convolutional neural networks, and reinforcement learning. Findings show that AI enhances detection accuracy, adaptability, and reduces false posi-tives. Machine learning efficiently classifies known attacks, while deep learning excels in identifying complex patterns such as distributed denial-of-service and advanced persis-tent threats. Unsupervised learning improves anomaly detection without labeled data. However, AI models require high-quality data, substantial computational resources, and remain vulnerable to adversarial attacks. Despite these challenges, AI provides a dynam-ic and adaptive security solution, surpassing traditional systems. Future research should enhance AI scalability and resilience for evolving cybersecurity threats. Keywords: anomaly detection; artificial intelligence; deep learning; machine learning; network security Abstrak: Perkembangan keamanan jaringan menghadapi tantangan yang semakin besar seiring meningkatnya kompleksitas serangan siber. Sistem berbasis aturan tradisional kesulitan mendeteksi zero-day attack dan teknik penyamaran. Penelitian ini mengkaji tren pengembangan algoritma berbasis AI, khususnya machine learning dan deep learning, dalam deteksi ancaman. Literature review mengevaluasi pendekatan berbasis AI, termasuk support vector machines, random forest, deep neural networks, convolutional neural networks, dan reinforcement learning. Hasil penelitian menunjukkan bahwa AI meningkatkan akurasi deteksi, adaptabilitas terhadap ancaman baru, serta mengurangi false positive. Machine learning efektif mengklasifikasikan serangan yang telah diketahui, sementara deep learning unggul dalam mengenali pola kompleks seperti distributed denial-of-service dan advanced persistent threats. Unsupervised learning meningkatkan deteksi anomali tanpa memerlukan data berlabel. Namun, AI masih bergantung pada data berkualitas tinggi, sumber daya komputasi besar, dan rentan terhadap adversarial attack. Meskipun demikian, AI menawarkan solusi keamanan yang lebih dinamis dan adaptif dibandingkan sistem tradisional. Penelitian selanjutnya perlu difokuskan pada peningkatan skalabilitas dan ketahanan AI dalam menghadapi ancaman siber yang terus berkembang. Kata kunci: deteksi anomali; jaringan keamanan; kecerdasan buatan; pembelajaran dalam; pembelajaran mesin
Penerapan Algoritma Decision Tree C4.5 untuk Klasifikasi Kepribadian Peserta Didik di Yayasan Al-Mubarak Irlanda, Dinda Claudia; Hariawan, Kurli; Rusdiah, Rudi
JATISI Vol 12 No 3 (2025): JATISI (Jurnal Teknik Informatika dan Sistem Informasi)
Publisher : Universitas Multi Data Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35957/jatisi.v12i3.12719

Abstract

After the COVID-19 pandemic, the world of education has often been in the spotlight regarding the personality of each student, which means that the world of education in Indonesia is often considered to have failed in creating a young generation with noble morals, character and morals. There are many problems experienced by the world of education which cause moral values to decline, as well as cases of drug abuse, promiscuity, crime, bullying and various other acts of violence. A healthy school environment can create good personalities in students. Every problem recorded in the Guidance Counseling (BK) book is also varied, but the problems most often recorded are regarding the character and personality attitudes of students who are lacking. So the school, assisted by a psychology teacher, made a decision by conducting a personality test so that the lost character and attitudes of the students could grow again. The method used in this research uses a personality test with the C4.5 Algorithm method. The results of the method used will produce a personality classification from the test given to students who experience problems. So that Guidance Counseling Teachers can handle students based on the participants' personalities
AI-BASED ALGORITHMS FOR NETWORK SECURITY: TRENDS, PER-FORMANCE, AND CHALLENGES Marison, Sihol; Silvanus, Silvanus; Rusdiah, Rudi
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 2 (2025): Maret 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i2.3699

Abstract

Abstract: The advancement of network security faces growing challenges as cyberattacks become more sophisticated. Traditional rule-based systems struggle with zero-day attacks and obfuscation techniques. This study examines the development trends of AI-based algo-rithms, particularly machine learning and deep learning, in threat detection. A literature review evaluates AI-driven approaches, including support vector machines, random for-est, deep neural networks, convolutional neural networks, and reinforcement learning. Findings show that AI enhances detection accuracy, adaptability, and reduces false posi-tives. Machine learning efficiently classifies known attacks, while deep learning excels in identifying complex patterns such as distributed denial-of-service and advanced persis-tent threats. Unsupervised learning improves anomaly detection without labeled data. However, AI models require high-quality data, substantial computational resources, and remain vulnerable to adversarial attacks. Despite these challenges, AI provides a dynam-ic and adaptive security solution, surpassing traditional systems. Future research should enhance AI scalability and resilience for evolving cybersecurity threats. Keywords: anomaly detection; artificial intelligence; deep learning; machine learning; network security Abstrak: Perkembangan keamanan jaringan menghadapi tantangan yang semakin besar seiring meningkatnya kompleksitas serangan siber. Sistem berbasis aturan tradisional kesulitan mendeteksi zero-day attack dan teknik penyamaran. Penelitian ini mengkaji tren pengembangan algoritma berbasis AI, khususnya machine learning dan deep learning, dalam deteksi ancaman. Literature review mengevaluasi pendekatan berbasis AI, termasuk support vector machines, random forest, deep neural networks, convolutional neural networks, dan reinforcement learning. Hasil penelitian menunjukkan bahwa AI meningkatkan akurasi deteksi, adaptabilitas terhadap ancaman baru, serta mengurangi false positive. Machine learning efektif mengklasifikasikan serangan yang telah diketahui, sementara deep learning unggul dalam mengenali pola kompleks seperti distributed denial-of-service dan advanced persistent threats. Unsupervised learning meningkatkan deteksi anomali tanpa memerlukan data berlabel. Namun, AI masih bergantung pada data berkualitas tinggi, sumber daya komputasi besar, dan rentan terhadap adversarial attack. Meskipun demikian, AI menawarkan solusi keamanan yang lebih dinamis dan adaptif dibandingkan sistem tradisional. Penelitian selanjutnya perlu difokuskan pada peningkatan skalabilitas dan ketahanan AI dalam menghadapi ancaman siber yang terus berkembang. Kata kunci: deteksi anomali; jaringan keamanan; kecerdasan buatan; pembelajaran dalam; pembelajaran mesin