Claim Missing Document
Check
Articles

Found 3 Documents
Search

Pengaruh Dinding Bata Bertulang Terhadap Kinerja Struktur Rangka Dengan Dinding Pengisi (Infilled Frame) I Ketut Sudarsana; Ida Bagus Rai Widiarsa; Made Khrisna Adi Negara; I Putu Agus Putra Wirawan
Jurnal Ilmiah Telsinas Vol 6 No 1 (2023)
Publisher : Universitas Pendidikan Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.38043/telsinas.v6i1.4224

Abstract

Penelitian ini dilakukan analisis perilaku dan kinerja Rangka Dinding Pengisi (RDP) dengan pasangan batu bata tanpa dan dengan tulangan. Dinding akan mengalami keruntuhan jika gempa kuat terjadi, hal itu dapat menurunkan kekakuan struktur dan menyebabkan kegagalan tingkat lunak. Penambahan tulangan diharapkan dapat mencegah terjadinya keruntuhan dinding. Validasi pemodelan dilakukan untuk mendapatkan parameter pemodelan sesuai karakteristik material dari hasil uji laboratorium. Pada studi ini dibuat empat model struktur dua dimensi (2D) yaitu model rangka terbuka (RT), model RDP tanpa tulangan (RTT), model RDP bertulang dengan empat buah tulangan vertikal (RV1) dan dua buah tulangan vertikal (RV2). Analisis linier dan non-linier dilakukan untuk mengetahui perilaku dan kinerja struktur. Perilaku struktur menunjukkan perpindahan terkecil sampai terbesar yaitu model RV1 = 4,21 mm, RV2 = 6,14 mm, RTT = 8,2 mm dan RT = 19,2 mm. Kinerja struktur menunjukkan kapasitas dari terbesar sampai terkecil yaitu model RV1 = 678 kN, RV2 = 340 kN, RTT = 290 kN dan RT = 150 kN. Model RV1 memiliki perilaku dan kinerja paling tinggi dari segi kekakuan dan kapasitas, namun model RV2 memiliki daktilitas tertinggi. Penambahan tulangan pada RDP mampu meningkatkan kekakuan struktur dan kapasitas gaya lateral dibandingkan dengan RDP tanpa tulangan.
MANUFACTURING FOAMED CONCRETE AS AN ALTERNATIVE MATERIAL TO REPLACE EMAS (ENGINEERED MATERIALS ARRESTING SYSTEM) Made Sukrawa; Ida Bagus Rai Widiarsa; I Nyoman Sucika
Jurnal Ilmiah Teknik Sipil Vol. 28 No. 1 (2024): Jurnal Ilmiah Teknik Sipil, Vol. 28 No. 1, Maret 2024
Publisher : Universitas Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/JITS.2024.v28.i01.p01

Abstract

The Engineered Material Arresting System (EMAS) serves as a solution to overrun aircraft, particularly on runways with Runway End Safety Area (RESA), thereby enhancing aviation safety. This study involves the fabrication and testing of foam concrete using local materials, including cement, fly ash, and foam, both with and without the addition of fibers. The targetdensity is set at 600 kg/m³. Materials utilized include Gresik PCC cement, Paiton fly ash, AKS brand foaming agent for foam production, and polypropylene fibers (Fosroc PPF M12). The research methodology encompasses literature of review and experimentation. The mix composition for one cubic meter of concrete comprises 300 kg cement, 111 kg fly ash, 135 liters water, and 720 liters foam. In the case of foam concrete with fibers, 2 kg of polypropylene fibers are added for 1 m3 of mix. Test specimens consist of 35 cylindrical specimens measuring 150 mm x 300 mm and 10 plates measuring 400 mm x 300 mm x 83 mm. The test results indicate a foam concrete density of 560 kg/m³ (for foam concrete with polypropylene fibers), slightly below the target of 600 kg/m³. The average compressive strength of specimens without fibers is 1.08 MPa, with a maximum deformation of 13.00 mm. Meanwhile, for foam concrete with fibers, the average compressive strength is 0.53 MPa, with a maximum deformation of 36.50 mm. The inclusion of fibers in foam concrete leads to lower compressive strength but increased ductility, as evidenced by longer deformation. This characteristic makes the addition of polypropylene fibers more suitable for use in EMAS. Consequently, Paiton fly ash, Gresik Portland cement, and foam (AKS foaming agent) can be effectively employed as local materials in the production of foam concrete for EMAS
MANUFACTURING FOAMED CONCRETE AS AN ALTERNATIVE MATERIAL TO REPLACE EMAS (ENGINEERED MATERIALS ARRESTING SYSTEM) Made Sukrawa; Ida Bagus Rai Widiarsa; I Nyoman Sucika
Jurnal Ilmiah Teknik Sipil Vol. 28 No. 1 (2024): Jurnal Ilmiah Teknik Sipil, Vol. 28 No. 1, Maret 2024
Publisher : Universitas Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/JITS.2024.v28.i01.p01

Abstract

The Engineered Material Arresting System (EMAS) serves as a solution to overrun aircraft, particularly on runways with Runway End Safety Area (RESA), thereby enhancing aviation safety. This study involves the fabrication and testing of foam concrete using local materials, including cement, fly ash, and foam, both with and without the addition of fibers. The targetdensity is set at 600 kg/m³. Materials utilized include Gresik PCC cement, Paiton fly ash, AKS brand foaming agent for foam production, and polypropylene fibers (Fosroc PPF M12). The research methodology encompasses literature of review and experimentation. The mix composition for one cubic meter of concrete comprises 300 kg cement, 111 kg fly ash, 135 liters water, and 720 liters foam. In the case of foam concrete with fibers, 2 kg of polypropylene fibers are added for 1 m3 of mix. Test specimens consist of 35 cylindrical specimens measuring 150 mm x 300 mm and 10 plates measuring 400 mm x 300 mm x 83 mm. The test results indicate a foam concrete density of 560 kg/m³ (for foam concrete with polypropylene fibers), slightly below the target of 600 kg/m³. The average compressive strength of specimens without fibers is 1.08 MPa, with a maximum deformation of 13.00 mm. Meanwhile, for foam concrete with fibers, the average compressive strength is 0.53 MPa, with a maximum deformation of 36.50 mm. The inclusion of fibers in foam concrete leads to lower compressive strength but increased ductility, as evidenced by longer deformation. This characteristic makes the addition of polypropylene fibers more suitable for use in EMAS. Consequently, Paiton fly ash, Gresik Portland cement, and foam (AKS foaming agent) can be effectively employed as local materials in the production of foam concrete for EMAS