Adawiah Adawiah
Integrated Laboratory Centre, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Ciputat, Tangerang Selatan 15412

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Effect of Additional Polyethylene Glycol and Citric Acid on Characteristics of NiMo/g-Al2O3 Catalyst in Light Cycle Gas Oil Hydrodesulfurisation Dede Sukandar; Lailatul Badriyah; Wawan Rustyawan; Adawiah Adawiah
Bulletin of Chemical Reaction Engineering & Catalysis 2023: BCREC Volume 18 Issue 1 Year 2023 (April 2023)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17036

Abstract

Sulfur is an impurity in diesel that causes low product quality and environmental pollution. Therefore, a catalyst is needed in the profound hydrodesulfurization (HDS) reaction to produce diesel fuel with low sulfur content. The catalyst synthesized in this work was NiMo/g-Al2O3 with the addition of PEG (2%, 4%, 6%) (w/w) and CA (1%, 2%, and 4%) (w/w). The catalyst was synthesized using the dry impregnation method with a metal concentration of 3% NiO and 15% MoO3. The obtained catalysts were characterized using X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), and Surface Area Analyzer (SAA). This work acquired the best catalyst characteristics for the HDS process by adding 2% PEG and 1% CA with a concentration of 3.19% NiO and 13.98% MoO3. The surface area, pore volume, and diameter are 181.655 m2/g, 0.50 cm3/g, and 110.51 Å, respectively. The catalyst activity satisfies Euro V standards at 345 ℃ with a sulfur content of 9.55 ppm, and the sulfur conversion (HDS) is 98.75%. The density and cetane index of the obtained diesel fuel was 0.798 g/mL and 53.6, respectively. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Green Synthesis of Cr-PTC-HIna Metal Organic Frameworks (MOFs) and Its Application in Methylene Blue Photocatalytic Degradation Nur Mahrunnisa; Adawiah Adawiah; Isalmi Aziz; Agustino Zulys
Bulletin of Chemical Reaction Engineering & Catalysis 2023: BCREC Volume 18 Issue 3 Year 2023 (October 2023)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.18885

Abstract

Metal Organic Framework (MOF) is a material that serves as a photocatalyst for decomposing methylene blue pollutant. MOF can be constructed using several kinds of synthetic methods. This study aims to determine the alternative efficient and eco-friendly synthesis method of isonicotinic acid-modulated chromium perylene 3,4,9,10-tetracharboxylate MOF (Cr-PTC-HIna) using solvothermal, hydrothermal, sonochemical, and mechanochemical methods. FTIR analysis revealed that Cr-PTC-HIna was successfully fabricated only by solvothermal, hydrothermal, and sonochemical methods, yielding 40.68%, 44.27%, and 46.50%. Cr-PTC-HIna-ST, Cr-PTC-HIna-HT, and Cr-PTC-HIna-SC have band gap energies of 2.02, 2.02, and 1.98 eV, respectively. Cr-PTC-HIna-HT and Cr-PTC-HIna-SC with irregular shapes form agglomerations. Cr-PTC-HIna-SC had the highest surface area, pore volume, and pore size of 92.76 m2.g−1, 0.3947cm3.g−1, and 142.74 nm, respectively. Cr-PTC-HIna-SC has the highest percentage of methylene blue decolorization through adsorption of 61.843% and photocatalytic degradation of 25.635%. Sonochemical and hydrothermal showed potential as more eco-friendly methods than solvothermal in synthesizing Cr-PTC-HIna MOF. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Effect of Additional Polyethylene Glycol and Citric Acid on Characteristics of NiMo/g-Al2O3 Catalyst in Light Cycle Gas Oil Hydrodesulfurisation Dede Sukandar; Lailatul Badriyah; Wawan Rustyawan; Adawiah Adawiah
Bulletin of Chemical Reaction Engineering & Catalysis 2023: BCREC Volume 18 Issue 1 Year 2023 (April 2023)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17036

Abstract

Sulfur is an impurity in diesel that causes low product quality and environmental pollution. Therefore, a catalyst is needed in the profound hydrodesulfurization (HDS) reaction to produce diesel fuel with low sulfur content. The catalyst synthesized in this work was NiMo/g-Al2O3 with the addition of PEG (2%, 4%, 6%) (w/w) and CA (1%, 2%, and 4%) (w/w). The catalyst was synthesized using the dry impregnation method with a metal concentration of 3% NiO and 15% MoO3. The obtained catalysts were characterized using X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), and Surface Area Analyzer (SAA). This work acquired the best catalyst characteristics for the HDS process by adding 2% PEG and 1% CA with a concentration of 3.19% NiO and 13.98% MoO3. The surface area, pore volume, and diameter are 181.655 m2/g, 0.50 cm3/g, and 110.51 Å, respectively. The catalyst activity satisfies Euro V standards at 345 ℃ with a sulfur content of 9.55 ppm, and the sulfur conversion (HDS) is 98.75%. The density and cetane index of the obtained diesel fuel was 0.798 g/mL and 53.6, respectively. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Synthesis of ZnO Nanoparticle using Lidah Mertua (Sansevieria trifasciata) Extract through Sol-Gel Method and Its Application for Methylene Blue Photodegradation Nanda Saridewi; Selviana Rustanti; Agustino Zulys; Siti Nurbayti; Isalmi Aziz; Adawiah Adawiah
Bulletin of Chemical Reaction Engineering & Catalysis 2023: BCREC Volume 18 Issue 3 Year 2023 (October 2023)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.19647

Abstract

Methylene blue is widely used in the textile industry and is difficult to degrade naturally because of its heterocyclic aromatic structure. One technique that can be used to degrade methylene blue is through a photocatalytic process using ZnO nanoparticles. This study aims to synthesize ZnO nanoparticles using Lidah mertua extract (Sansevieria trifasciata) as a capping agent by the sol-gel method, and determine the characteristics and stability of ZnO nanoparticles in methylene blue photodegradation. The synthesis of ZnO nanoparticles begins with drying Lidah mertua, grinding it, and then extracting it using distilled water. Furthermore, the extract was reacted with Zn(CH3COO)2.2H2O 0.15 M at pH 8. The extract was characterized using Fourier Transform Infrared (FTIR), and the ZnO nanoparticles were characterized using X-Ray Diffraction (XRD), ultraviolet-visible (UV-Vis) DRS, and Scanning Electron Microscopy (SEM). Lidah mertua extract has OH (hydroxyl), CN, CH, and C=C functional groups. The obtained ZnO nanoparticles have a crystal size of 19.324 nm. The crystalline phase is hexagonal; the morphology is spherical, with a particle size of 79.153 nm and a band gap energy of 3.21 eV. ZnO nanoparticles exhibited a methylene blue decolorization of 98.50% through 43.41% by adsorption and 55.09% by photocatalytic mechanism. ZnO nanoparticles showed good stability for a three-cycle reaction. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)