Ummi Maryam Zulfin
Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Cardamom Essential Oil Extract Suppress the Progression of Triple-Negative Breast Cancer 4T1 Cell Line Ahmad Syauqy Tafrihani; Nisa Ul Hasanah; Dhiya Ulhaq Salsabila; Ratih Kurnia Wardani; Ummi Maryam Zulfin; Muthi' Ikawati; Edy Meiyanto; Riris Istighfari Jenie
The Indonesian Biomedical Journal Vol 15, No 2 (2023)
Publisher : The Prodia Education and Research Institute (PERI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18585/inabj.v15i2.2140

Abstract

BACKGROUND: Cardamom (Amomum cardamom) essential oil (CEO) contains monoterpenes with antioxidant activity and is reported to exhibit anticancer activity against some cancer cell lines. Triple-negative breast cancer (TNBC) has the lowest prognosis among breast cancer types due to its aggressive characteristics. This study was conducted to explore the potency of CEO in inhibiting 4T1 cell proliferation and migration and compared its activity to sappan (Caesalpinia sappan) wood extract (CSE).METHODS: We used the 4T1 cell line as the TNBC cell model and tested the cytotoxicity of CEO by using a trypan blue exclusion assay. We studied the senescence induction ability of CEO using SA-β-Gal assay, the migratory inhibition activity using scratch wound healing assay, and inhibition of matrix metalloproteinase 9 (MMP-9) expression using gelatin zymography. RESULTS: CEO showed cytotoxicity toward 4T1 cells with the IC50 values of 60 µg/mL. CEO at ½ IC50 and IC50 concentration significantly increased cell senescence, but CSE did not. CEO at IC50 also reduced cell ability to migrate and also considerably reduced MMP-9 activity. Moreover, these activities related to the inhibition of the cell metastasis process were weaker compared than that of CSE.CONCLUSION: CEO showed potency as a chemopreventive agent on the TNBC 4T1 cell line model with moderate cytotoxicity. CEO induced 4T1 cell senescence, inhibited cell migration and suppressed MMP-9 expression.KEYWORDS: Amomum cardamom, Caesalpinia sappan, 4T1, senescence, cell migration, triple-negative breast cancer 
The Synergistic Effect of Combination of Pentagamavunone-1 with Diosmin, Galangin, and Piperine in WiDr Colon Cancer Cells: In vitro and Target Protein Prediction Muthi Ikawati; Hajidah Musyayyadah; Yurananda Magnalia Putri; Ummi Maryam Zulfin; Febri Wulandari; Dyaningtyas Dewi Pamungkas Putri; Edy Meiyanto
Journal of Tropical Biodiversity and Biotechnology Vol 8, No 2 (2023): August
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jtbb.80975

Abstract

Pentagamavunone-1 (PGV-1) is a curcumin analog with a prominent anti-cancer potency in vitro and in vivo for several cancer types, including colon cancer. Combining PGV-1 with natural compounds such as diosmin, galangin, and piperine can enhance its effectiveness due to their promising chemoprevention properties. We aimed to evaluate the effectiveness of combining PGV-1 with diosmin, galangin, or piperine for colon cancer by using in vitro and bioinformatic approaches to predict their target proteins. WiDr cells were used as a model for colon adenocarcinoma (COAD). The cell viability under a single or combination treatment of PGV-1 and diosmin, galangin, or piperine was evaluated using direct counting by the trypan blue exclusion test. SwissTargetProtein, UALCAN, and OncoLnc were utilized to predict target proteins of the compounds in COAD, the expression level of target proteins in COAD, and the survival rate of patients with overexpressed target proteins, respectively. The IC50 values for PGV-1, diosmin, galangin, and piperine were 2.8´10-2 µg/mL, 81 µg/mL, 7 µg/mL, and 172 µg/mL, respectively. All the tested natural compounds showed synergistic effects when combined with PGV-1 at low concentrations. Eleven proteins that were overexpressed in COAD were identified as potential targets. Overlapped predicted targets of PGV-1 and galangin or piperine were CDK1, MET, and TOP2A. The high expression of another set of predicted target proteins, SCD, CA9, and SQLE, led to lower survival rates in COAD patients. We concluded that combinations of PGV-1 with natural compounds can synergistically enhane its anti-cancer activity for colon cancer.