Felix Andika Dwiyanto
AGH University of Science and Technology

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Can Multinomial Logistic Regression Predicts Research Group using Text Input? Harits Ar Rosyid; Aulia Yahya Harindra Putra; Muhammad Iqbal Akbar; Felix Andika Dwiyanto
Knowledge Engineering and Data Science Vol 5, No 2 (2022)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v5i22022p150-159

Abstract

While submitting proposals in SISINTA, students often confuse or falsely submit their proposals to the less relevant or incorrect research group. There are 13 research groups for the students to choose from. We proposed a text classification method to help students find the best research group based on the title and/or abstract. The stages in this study include data collection, preprocessing data, classification using Logistic Regression, and evaluation of the results. Three scenarios in research group classification are based on 1) title only, 2) abstract only, and 3) title and abstract. Based on the experiments, research group classification using title-only input is the best overall. This scenario gets the most optimal results with accuracy, precision, recall, and f1-score successively at 63.68%, 64.91%, 63.68%, and 63.46%. This result is sufficient to help students find the best research group based on the text titles. In addition, lecturers can comment more elaborately since the proposals are relevant to the research group’s scope.
Analisis Performa Metode Support Vector Regression (SVR) dalam Memprediksi Harga Bahan Sembako Nasional Huzain Azis; Purnawansyah Purnawansyah; Nirwana Nirwana; Felix Andika Dwiyanto
ILKOM Jurnal Ilmiah Vol 15, No 2 (2023)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v15i2.1686.390-397

Abstract

Support Vector Regression (SVR) is a supervised learning algorithm to predict continuous variable values. The basic goal of the SVR algorithm is to find the most suitable decision line. SVR has been successfully applied to several issues in time series prediction. In this research, SVR is used to predict the price of staple commodity, which are constantly changing in price at any time due to several factors making it difficult for the public to get groceries that are easy to reach. National staple commodity data consisting of 17 commodities, including shallots, honan garlic, kating garlic, medium rice, premium rice, red cayenne peppers, curly red chilies, red chili peppers, meat of broiler chicken, beef hamstrings, granulated sugar, imported soybeans, bulk cooking oil, premium packaged cooking oil, simple packaged cooking oil, broiler chicken eggs, and wheat flour. With a data set for the last 3 years, including from January 1, 2020, to December 31, 2022. There are 3 variables in the data set, namely commodity, date, and price. This research divides the entire dataset into 80% training and 20% testing data. The results of this research show that SVR using the RBF kernel produces good forecasting accuracy for all datasets with an average Mean Square Error (MSE) training data of 6,005 while data testing is 6,062, Mean Absolute Deviation (MAD) of training data is 6,730 while data testing is 6.6831, Mean Absolute Percentage Error (MAPE) training data is 0.0148 while data testing is 0.0147, and Root Mean Squared Error (RMSE) training data is 7.772 while data testing is 7.746.
Mining the public sentiment for wayang climen preservation and promotion Aji Prasetya Wibawa; Adjie Rosyidin; Fitriana Kurniawati; Gwinny Tirza Rarastri; Ilham Ari Elbaith Zaeni; Suyono Suyono; Agung Bella Putra Utama; Felix Andika Dwiyanto
International Journal of Visual and Performing Arts Vol 5, No 2 (2023)
Publisher : ASSOCIATION FOR SCIENTIFIC COMPUTING ELECTRICAL AND ENGINEERING (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/viperarts.v5i2.1163

Abstract

Indonesia is a country that has a variety of cultural arts, one of which is shadow puppetry (Wayang). Wayang, in a staged, simple, and minimalist manner, is called Wayang Climen. Wayang Climen has been performed since the COVID-19 pandemic as a solution to keep working while still complying with health protocols. Utilization through YouTube social media attracts people to watch and provide opinions through comments. This opinion is beneficial and can be used as a feasibility study through sentiment analysis information classified as positive, negative, and neutral opinions. Sentiment analysis determines a person's opinion and tendency to opinionated sentences. The methods used are Random Forest (RF), Support Vector Machine (SVM), and Naïve Bayes (NB). The dataset comes from YouTube comments of Dalang Seno and Ki Seno Nugroho. The best accuracy is generated by SVM (70.29%). The positive sentiment shows the public's appreciation for the Wayang Climen performance, which ultimately represents the performance even though it is staged densely. This research contributes to effectively utilizing digital platforms for cultural preservation and audience engagement during challenging times, demonstrating the potential for innovative solutions in traditional arts and entertainment.