Claim Missing Document
Check
Articles

Found 2 Documents
Search

AKTIVITAS DAN HASIL BELAJAR SISWA PADA MATERI SISTEM PENCERNAAN DENGAN PENERAPAN STRATEGI PEMBELAJARAN DISCOVERY LEARNING Suprihatin, -; Isnaeni, Wiwi; Christijanti, Wulan
Journal of Biology Education Vol 3 No 3 (2014)
Publisher : Journal of Biology Education

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstract Learning strategy which emphasizes on activities students will results optimal learning. Based on firstly observations in SMA N 3 Pekalongan, learning interactions in the classroom less favorable. It needs a learning strategy that can generate activity and student learning outcomes. Application of Discovery Learning learning strategies paired with a media card is expected to help students in the learning process. This study aims to determine the effect of the application of learning strategies Discovery Learning on the activity and student learning outcomes in the digestive system material. This research is a pre Experimental Design, using a pretest-posttest pattern of one group design, without using a control class. Sampling was done by purposive sampling techniques, taken two of the four classes, XI IPA 1 and XI IPA 4. Activity value obtained through observation while teaching and learning results obtained through an increase in the value of learning outcomes pretest-posttest (N-Gain). The results showed that the application of learning strategies Discovery Learning with media affect the activity of matching cards and student learning outcomes.   Abstrak Strategi pembelajaran yang menekankan pada aktivitas siswa akan memperoleh hasil belajar yang optimal. Berdasarkan observasi awal yang dilakukan di SMA N 3 Pekalongan, interaksi pembelajaran dalam kelas relatif belum optimal. Perlu adanya strategi pembelajaran yang dapat membangkitkan aktivitas dan hasil belajar siswa. Penerapan strategi pembelajaran Discovery Learning disertai media kartu berpasangan diharapkan dapat membantu siswa dalam proses belajar. Penelitian ini bertujuan untuk mengetahui pengaruh penerapan strategi pembelajaran Discovery Learning terhadap aktivitas dan hasil belajar siswa pada materi sistem pencernaan. Penelitian ini merupakan penelitian Pre Experimental Design, menggunakan pola Pretest-posttest one group design, tanpa menggunakan kelas kontrol. Pengambilan sampel dilakukan dengan teknik Purpossive Sampling, dari empat kelas diambil dua kelas yaitu kelas XI IPA 1 dan XI IPA 4. Nilai aktivitas diperoleh melalui observasi saat pembelajaran dan hasil belajar diperoleh melalui nilai peningkatan hasil belajar pretest-posttest (N-Gain). Hasil penelitian menunjukkan bahwa penerapan strategi pembelajaran Discovery Learning disertai media kartu berpasangan berpengaruh terhadap aktivitas dan hasil belajar siswa.              
Fuzzy Soft Set Clustering for Categorical Data Yanto, Iwan Tri Riyadi; Apriani, Ani; Wahyudi, Rofiul; WaiShiang, Cheah; Suprihatin, -; Hidayat, Rahmat
JOIV : International Journal on Informatics Visualization Vol 8, No 1 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.1.2364

Abstract

Categorical data clustering is difficult because categorical data lacks natural order and can comprise groups of data only related to specific dimensions. Conventional clustering, such as k-means, cannot be openly used to categorical data. Numerous categorical data using clustering algorithms, for instance, fuzzy k-modes and their enhancements, have been developed to overcome this issue. However, these approaches continue to create clusters with low Purity and weak intra-similarity. Furthermore, transforming category attributes to binary values might be computationally costly. This research provides categorical data with fuzzy clustering technique due to soft set theory and multinomial distribution. The experiment showed that the approach proposed signifies better performance in purity, rank index, and response times by up to 97.53%. There are many algorithms that can be used to solve the challenge of grouping fuzzy-based categorical data. However, these techniques do not always result in improved cluster purity or faster reaction times. As a solution, it is suggested to use hard categorical data clustering through multinomial distribution. This involves producing a multi-soft set by using a rotated based soft set, and then clustering the data using a multivariate multinomial distribution. The comparison of this innovative technique with the established baseline algorithms demonstrates that the suggested approach excels in terms of purity, rank index, and response times, achieving improvements of up to ninety-seven-point fifty three percent compared to existing methods.