Pika Silvianti
Department of Statistics, IPB University, Indonesia

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Penggerombolan Hasil Ujian Nasional Menggunakan K-Rataan Samar Nouval Habibie; Akbar Rizki; Pika Silvianti
Xplore: Journal of Statistics Vol. 10 No. 1 (2021)
Publisher : Department of Statistics, IPB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1014.777 KB) | DOI: 10.29244/xplore.v10i1.365

Abstract

National examination scores can be a basis for the government to make a mapping of education quality in order to increase it. The mapping can be done by using fuzzy cluster analysis. The objective of this experiment is to cluster districts/cities in Indonesia based on national examination score in natural and social science in 2014/2015 until 2017/2018 school year by using the fuzzy c-means method. The evaluation criteria that will be used are the standard deviation ratio, silhouette coefficient, and Xie Beni index. The best cluster size is two clusters, A and B. The clustering result shows cluster A has a higher mean from each subject than cluster B. Therefore, cluster A will be categorized as good, whereas cluster B as bad. The proportion of districts/cities that belong to cluster A decreased each year. The final cluster result can be determined by the mean of its degree of membership from those four school years. The analysis results show that the distribution of education quality is dominated in Java Island and squatter cities. East Nusa Tenggara, West Sulawesi, Central Sulawesi, and North Kalimantan don’t have any districts/cities belong to cluster A.
Pemodelan Tingkat Kriminalitas di Indonesia Menggunakan Analisis Geographically Weighted Panel Regression Endah Febrianti; Budi Susetyo; Pika Silvianti
Xplore: Journal of Statistics Vol. 12 No. 1 (2023): Vol. 12 No. 1 (2023)
Publisher : Department of Statistics, IPB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (516.539 KB) | DOI: 10.29244/xplore.v12i1.950

Abstract

Crime is one of the socio-economic problems that Indonesia has not yet resolved. Although Indonesia is categorized as a safe country to visit, in reality, there are still many Indonesian people who experience crime. The resolution of this socio-economic problem is very important because it involves the safety and comfort of the community. This study aims to identify the factors that influence the crime rate in Indonesia and determine the best model for each province by comparing the panel data regression model and the Geographically Weighted Panel Regression (GWPR) model. This research data consists of 34 provinces in Indonesia from 2016 to 2020. The analysis used is panel data regression analysis and GWPR. The result is that the adaptive kernel gaussian GWPR is the best model with of 69,89% and AIC of 167,4585. The GWPR modeling produces model equations and significant variables for each province. In general, five variables have a significant effect on the crime rate, namely percentage of poor population, open unemployment rate, Gross Regional Domestic Product at the constant price per capita, human development index, and mean years of schooling.
Algoritme Support Vector Machine untuk Analisis Sentimen Berbasis Aspek Ulasan Game Online Mobile Legends: Bang-Bang Mar Atul Aji Tyas Utami; Pika Silvianti; Muhammad Masjkur
Xplore: Journal of Statistics Vol. 12 No. 1 (2023): Vol. 12 No. 1 (2023)
Publisher : Department of Statistics, IPB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (905.151 KB) | DOI: 10.29244/xplore.v12i1.1064

Abstract

The presence of the digital technology era is facilitated by an internet connection that is easily accessible and provides many features and entertainment, one of which is online games. Mobile Legends: Bang-Bang is a Multiplayer Online Battle Arena (MOBA)-type online game that has been popular since its launch in 2016. Currently, Mobile Legends: Bang-Bang is still the top free game on the Google Play Store. This popularity is inseparable from user reviews that provide different information and sentiment. This research will identify the sentiment of application user reviews based on aspects of gameplay, performance, visualization, and player. The classification method used in this study is the Support Vector Machine (SVM). The online game application Mobile Legends: Bang-Bang tends to have negative sentiment from aspects of gameplay, performance, and player. However, from the visualization aspect, they tend to have positive sentiment. The results of the evaluation of the model based on the value of accuracy, F1-score, and AUC, it was found that the gameplay, Performance, and Player aspects gave better classification results than the Visualization aspect.