Karel Fauzan Hakim
Departemen Statistika, IPB University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Latent Dirichlet Allocation dalam Identifikasi Respon Masyarakat Indonesia Terhadap Covid-19 Tahun 2020-2021 Karel Fauzan Hakim; Pika Silvianti; Agus Mohamad Soleh
Xplore: Journal of Statistics Vol. 10 No. 3 (2021)
Publisher : Department of Statistics, IPB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (298.682 KB) | DOI: 10.29244/xplore.v10i3.836

Abstract

Covid-19 is a very troubling disease in Indonesia. Therefore, understanding public opinion is required to find solutions and evaluate the government performance in handling the pandemic. Twitter can be helpful to identify the public opinion of significant events. Twitter’s tweet is a large dimension text-based big data. It requires text sampling and text mining to be processed efficiently and effectively. Stratified random sampling with 20 repetitions applied to assume days as strata followed by topic modeling with latent Dirichlet allocation (LDA). This research aims to find out public opinion regarding Covid-19 and itsgrowth over time. Other than that, this research also aims to find out sampling effects on tweet data using stratified random sampling. Therefore, the extracted topics will be transformed into time-series data and considering the variety of the pattern made. Afterward, the transformation results will be explored and interpreted. This research suggests that discussions related to Covid-19 are divided into four topics by the first model, namely: “Vaccine”, “Positive or affected people”, “Health protocol”, and “Indonesia” then nine topics by the second model, namely: “Vaccine”, “Prayer”, “Health protocol”, “Social aid and corruption”, “Affected people”, “Indonesian economy”, “Work”, “Persuading to wear mask”, and “Willing to watch”. Furthermore, some topics peak whenever a significant event occurs in Indonesia. Afterward, this research suggests that 20 repetitions of stratified random sampling could provide good results.