Claim Missing Document
Check
Articles

Found 4 Documents
Search

Pengaruh Profesionalisme, Etika Auditor, Pengalaman Kerja, dan Fee Audit terhadap Kualitas Audit pada KAP Medan Wijaya, Larissa; Wijaya, Veronica; Katherin, Katherin
Ekuitas: Jurnal Pendidikan Ekonomi Vol 9, No 2 (2021)
Publisher : Fakultas Ekonomi Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/ekuitas.v9i2.40258

Abstract

In the process of obtaining the quality of a financial report, auditors are needed to master a good basis. This study includes respondents who are in the city of Medan. Due to the fact that the city of Medan has a number of KAPs on a relatively wide scale and demands that the presence of auditors be independent to carry out a review of the financial statements in presenting their views on the basis of the research, the participation in determining audit quality is representative enough for this research to be carried out. Professionalism, auditor ethics, work experience, and audit fees all have an impact on audit quality at the Medan KAP office. This research is quantitative and the data collection technique is by distributing questionnaires. The Medan Public Accounting Firm is the focus of the research demographics. In the following research, the number of auditors is 92 people. The data was tested using descriptive statistics, then tested the classical assumptions using normality, multicollinearity, heteroscedasticity and glesjer tests and hypothesis testing using multiple regression models assisted by IBM SPSS Statistics 22 software.Professionalism, work experience auditor ethics, and audit fees explain 17.5% of audit quality, and 82.5% are variables not described in this study.
Workshop Introduction to Transivity System Analysis in Narrative Texts for Students Santoso, Bernadus Wahyudi Joko; Hasyim, Mohamad Yusuf Ahmad; Pujitriherwanti, Anastasia; Wijaya, Veronica
Jurnal Abdimas Vol 27, No 2 (2023): December 2023
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/abdimas.v27i2.48772

Abstract

The competence to analyze students' language is essential and needs to be improved from year to year. So far, in the syntax course, students have only been trained to analyze functions, categories, and semantic roles. The analysis of transitivity has yet to be provided because the language analysis using the Systemic Functional Linguistics (SFL) approach is more complex compared to structural-semantic analysis (functions, categories, and semantic roles). Therefore, this community service aims to introduce the transitivity system to Foreign Language Department students at the Faculty of Language and Arts, Semarang State University, and Indonesian Language Teaching Department students at IAIN Syekh Nurjati Cirebon in short narrative texts. Thus, the effort to improve students' ability to analyze narrative texts with the SFL approach is well-targeted and occurs at the right time, which is before they take Discourse Analysis courses. This community service activity was conducted over two days. On day 1, the team provided a general workshop on the topic, explaining that language in SFL theory can perform three metafunctions: the ideational function, interpersonal function, and textual function. On day 2, the community service students were guided to analyze the seven transitivity elements in narrative texts step by step. The result of this community service is that, on average, students' achievement levels in analyzing the transitivity system in non-narrative texts (independent clauses) are better than in narrative texts. However, the difference is not too significant because it is likely that narrative texts are more complex than SFL analysis of free sentences.
Perancangan Aplikasi Pengelola Tugas dan Proyek “SiMoody” Suwandy, Riche; Halim, Fandi; Wang, Vanie; Wijaya, Veronica
REMIK: Riset dan E-Jurnal Manajemen Informatika Komputer Vol. 8 No. 4 (2024): Call for Paper: Volume 8 Nomor 4 Oktober 2024
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/remik.v8i4.14178

Abstract

Manajemen tugas dan proyek memainkan peran krusial dalam kehidupan modern, baik dalam konteks profesional maupun pribadi. Produktivitas yang terganggu oleh gangguan dan multitasking dapat mengakibatkan penurunan kinerja hingga 40%. Namun, aspek psikologis seperti mood sering diabaikan saat mengelola tugas dan proyek, bahkan sebagian besar pengguna sering merasa demotivasi selama proses pengerjaannya. Selain itu, industri kreatif dalam sub-sektor aplikasi yang semakin berkembang dan inovatif mendorong kreativitas penulis untuk tidak hanya melibatkan pengelolaan tugas, melainkan juga melibatkan aktivitas kolaborasi dan evaluasi dalam suatu proyek untuk meningkatkan produktivitas, efektivitas, dan kepuasan pengguna. Perancangan aplikasi aplikasi pengelola tugas dan proyek “SiMoody” merupakan aplikasi berbasis mobile yang dirancang utnuk memungkinkan pengguna dalam meningkatkan produktivitas, efektivitas, dan kepuasan pengguna melalui beberapa fitur yang ada. Aplikasi ini dilengkapi dengan teknologi FER (Facial Expression Recognition) untuk mengidentifikasi mood, mampu merekomendasikan tugas berdasarkan mood pengguna, dan memberikan evaluasi kinerja terhadap proyek.
ANALISIS PERBANDINGAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK DAN ALGORITMA MULTI-LAYER PERCEPTRON NEURAL DALAM KLASIFIKASI CITRA SAMPAH Kohsasih, Kelvin Leonardi; Agung Rizky, Muhammad Dipo; Fahriyani, Tasya; Wijaya, Veronica; Rosnelly, Rika
Jurnal TIMES Vol 10 No 2 (2021): Jurnal TIMES
Publisher : STMIK TIME

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (496.449 KB) | DOI: 10.51351/jtm.10.2.2021655

Abstract

Menurut laporan bank dunia sampah merupakan salah satu permasalahan yang dihadapi dunia. Image clasification adalah salah satu bidang machine learning yang mampu melakukan klasikasi sampah berdasarkan jenisnya. Salah satu algoritma klasifikasi yang populer dan banyak digunakan adalah algoritma CNN yang merupakan algoritma deep learning. Pada penelitian ini kami akan melakukan analisis perbandingan kinerja algoritma CNN dengan algoritma MLP dalam melakukan klasifikasi jenis sampah. Dari penelitian yang kami lakukan, CNN mendapatkan performa yang lebih baik dimana hasil precision, recall, f1-score, dan accuracy sebesar 0,98 dan model CNN lebih efektif dalam melakukan klasifikasi sampah berdasarkan kelasnya.