Claim Missing Document
Check
Articles

Found 3 Documents
Search

PENGARUH PERTAHANAN TANAMAN DALAM PENGUSIRAN HAMA PADA MODEL PENANGGULANGAN HAMA TANAMAN TERPADU Ali Kusnanto; Siswandi; Jaharuddin; Farida Hanum
MILANG Journal of Mathematics and Its Applications Vol. 19 No. 1 (2023): MILANG Journal of Mathematics and Its Applications
Publisher : Dept. of Mathematics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/milang.19.1.43-51

Abstract

Dalam tulisan ini dikembangkan model pengendalian hama tanaman terpadu yang didasarkan pada model mangsa-pemangsa Leslie-Gower. Dalam model ini terdapat unsur pertahanan tanaman (tanaman yang mengeluarkan senyawa/bau) yang akan mampu mengusir sebagian hama yang ada di sekitarnya. Populasi yang terlibat dalam model ini yaitu populasi tanaman, populasi hama, dan populasi pemangsa hama. Tujuan tulisan ini adalah menentukan pengaruh pertahanan tanaman terhadap dinamika populasi yang terlibat. Dari analisis, menghasilkan empat titik tetap. Simulasi dilakukan untuk melihat pengaruh perubahan koefisien efisiensi pertahanan tanaman terhadap kestabilan titik tetap yang diperoleh. Telah ditunjukkan bahwa jika nilai koefisien efisiensi pertahanan tanaman diperbesar, mengakibatkan hama dan pemangsa hama menuju kepunahan dan populasi tanaman akan bertambah banyak.
A FAST COMPUTATION FOR EIGENVALUES OF CIRCULANT MATRICES WITH ARITHMETIC SEQUENCE Sugi Guritman; Jaharuddin; Teduh Wulandari Mas'oed; Siswandi
MILANG Journal of Mathematics and Its Applications Vol. 19 No. 1 (2023): MILANG Journal of Mathematics and Its Applications
Publisher : Dept. of Mathematics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/milang.19.1.69-80

Abstract

In this article, we derive simple formulations of the eigenvalues, determinants, and also the inverse of circulant matrices whose entries in the first row form an arithmetic sequence. The formulation of the determinant and inverse is based on elementary row and column operations transforming the matrix to an equivalent diagonal matrix so that the formulation is obtained easily. Meanwhile, for the eigenvalues formulation, we simplify the known result of formulation for the general circulant matrices by exploiting the properties of the cyclic group induced by the set of all roots of as the set of points in the unit circle in the complex plane, and also by considering the specific property of arithmetic sequence. Then, we construct an algorithm for the eigenvalues formulation. This algorithm shows a better computation compared to the previously known result for the general case of circulant matrices.
DETERMINAN, INVERS, DAN NILAI EIGEN MATRIKS SKEW-CIRCULANT DENGAN ENTRI BARISAN GEOMETRI Mirza Farhan Azhari; Teduh Wulandari Mas'oed; Sugi Guritman; Jaharuddin; Siswandi
MILANG Journal of Mathematics and Its Applications Vol. 19 No. 2 (2023): MILANG Journal of Mathematics and Its Applications
Publisher : Dept. of Mathematics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/milang.19.2.129-140

Abstract

Matriks skew-circulant adalah matriks segi yang entri terakhir setiap baris berpindah ke posisi utama dan berganti tanda disertai pergeseran semua entri lainnya ke posisi berikutnya. Dalam artikel ini, entri dari matriks circulant berupa entri barisan bilangan geometri. Tujuannya adalah merumuskan suatu formulasi sederhana dari determinan, invers, dan nilai eigen dari suatu matriks skew circulant. Formulasi determinan ditentukan dengan menerapkan serangkaian operasi baris dasar dan kolom dasar sampai diperoleh matriks diagonal. Langkah untuk mencari invers dilakukan dengan mengadaptasi metode dalam mencari determinan dan ekuivalensi baris dan kolom pada matriks. Dalam mencari nilai eigen digunakan konsep akar kesatuan (roots of unity) dan subgrup siklik.