Alan Catur Nugraha
Departemen Matematika Institut Teknologi Sepuluh Nopember Surabaya

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Komparasi Deteksi Kecurangan pada Data Klaim Asuransi Pelayanan Kesehatan Menggunakan Metode Support Vector Machine (SVM) dan Extreme Gradient Boosting (XGBoost) Alan Catur Nugraha; Mohammad Isa Irawan
Jurnal Sains dan Seni ITS Vol 12, No 1 (2023)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j23373520.v12i1.107032

Abstract

Pada era informasi ini banyak proses digitalisasi di berbagai bidang kehidupan maka semakin penting juga informasi yang didapatkan dari kumpulan data yang ada. Dampak dari perkembangan ini adalah semakin mudah terlihat kejanggalan pada data yang biasa terjadi dikarenakan adanya praktek kecurangan atau fraud. Deteksi adanya fraud pada layanan kesehatan penting dilakukan untuk dalam pengambilan keputusan yang diambil penyedia layanan kesehatan. Fraud pada layanan kesehatan itu sendiri merupakan masalah utama yang sering dialami penyedia layanan kesehatan saat ini yang merugikan banyak pihak di dalamnya. Oleh karena itu, penelitian ini membahas bagaimana cara mendeteksi fraud pada pelayanan kesehatan dengan cara machine learning. Machine learning adalah cara peningkatan kemampuan mesin dalam menyelesaikan masalah yang baru. Metode machine learning yang digunakan adalah klasifikasi Support Vector Machine (SVM) dan metode klasifikasi Extreme Gradient Boosting (XGBoost) yang hasilnya dibandingkan untuk melihat model yang lebih baik. Hasil yang didapatkan adalah hasil yang berhasil mendeteksi data fraud pada data pelayanan kesehatan tersebut dengan performa klasifikasi yang baik dalam membantu memberikan referensi pada penyedia layanan dalam mendeteksi fraud . Metode XGBoost menghasilkan performa klasifikasi yang baik dengan menghasilkan nilai Balanced Accuracy dan nilai Recall sebesar 0.9995 dan 0.9994.