Antonio Galileo Tando
Departemen Matematika Institut Teknologi Sepuluh Nopember Surabaya

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Analisis Dinamika Harga Saham yang Dipengaruhi oleh Analisis Sentimen di Media Sosial Menggunakan Algoritma Support Vector Machine Antonio Galileo Tando; Mohammad Isa Irawan
Jurnal Sains dan Seni ITS Vol 12, No 1 (2023)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j23373520.v12i1.107080

Abstract

Saham dapat dideskripsikan sebagai tanda penyertaan modal pribadi atau pihak (badan usaha) dalam suatu perusahaan atau perseroan terbatas. Indeks LQ-45 terdiri atas 45 saham yang terpilih berdasarkan likuiditas perdagangan saham dan disesuaikan setiap enam bulan atau dua periode, maka saham yang terdapat dalam indeks tersebut akan selalu berubah. Analisis sentimen atau opinion mining merupakan studi komputasi dalam opini, sentimen, dan emosi yang diungkapkan dalam sebuah teks. Algoritma yang digunakan untuk melakukan klasifikasi adalah Support Vector Machine yang termasuk dalam algoritma supervised learning yang dapat digunakan untuk mengklasifikasikan teks secara otomatis. Pada penelitian ini, pre-processing teks yang digunakan adalah case folding, tokenizing, normalization, stopwords, dan stemming. Hasil klasifikasi untuk analisis sentimen dengan algoritma SVM menghasilkan accuracy rata-rata sebesar 75%. Kata-kata yang sering muncul pada masing-masing perusahaan, pada dataset sentimen positif adalah kata “bantu”, “kuat”, dan “sehat”. Sedangkan pada dataset negatif didominasi oleh kata “turun”, “tahan”, dan “bawah”. Hasil korelasi Rank Spearman menunjukkan beberapa perusahaan saham yaitu ANTM, BMRI, dan TLKM menghasilkan bahwa sentimen positif memiliki korelasi yang lemah dengan harga saham, sedangkan sentimen negatif tergolong tidak memiliki korelasi dengan harga saham.