Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal Teknologi Informasi dan Ilmu Komputer

Penerapan Algoritma Fuzzy Mamdani untuk Memberikan Saran yang Optimal dalam Pengambilan Keputusan pada Permainan KArtu Monster Perdana, Muhammad Rizky; Sundawaijaya, Andika; Nuraminah, Ahlijati
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 9 No 7: Spesial Issue Seminar Nasional Teknologi dan Rekayasa Informasi (SENTRIN) 2022
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2022976765

Abstract

Permainan kartu monster Yu-Gi-Oh merupakan permainan strategi yang dilakukan bergiliran antar pemain dengan mengeluarkan kartu yang tepat untuk menyerang atau bertahan dengan tujuan mengurangi poin kehidupan musuh dan melindungi poin kehidupan pemain. Dalam menentukan kartu yang tepat dalam permainan, diperlukan informasi yang akurat pada suatu kondisi permainan. Banyak pemain salah mengambil langkah dalam permainan, sehingga kesempatan kalah menjadi lebih besar. Untuk itu diperlukan sebuah sistem saran yang mampu membantu pemain dalam menentukan kartu yang sesuai untuk digunakan dalam permainan tersebut. Sistem saran akan memberikan masukan kepada pemain dalam menentukan kartu yang tepat dan optimal dalam suatu langkah. Salah satu algoritma yang mampu memetakan dan menentukan keputusan yang dapat menjadi sebuah sistem saran adalah fuzzy dengan inferensi Mamdani. Pada penelitian ini, pemilihan saran kartu menggunakan algoritma Fuzzy Mamdani dilakukan berulang kali sebanyak 15 kali menggunakan data kartu Yu-Gi-Oh yang sudah diolah. Hasil akurasi dari model pemilihan saran kartu yang dirancang sebesar 0,733 yang artinya cukup baik. Dari hasil tersebut rekomendasi pengembangan penelitian antara lain dengan menambah kartu pada dataset seperti beberapa tipe kartu yang berbeda dan menambahkan atau menggunakan metode yang berbeda serta analisis penambahan input pada variabel Fuzzy untuk menambah akurasi sistem dalam memilih saran kartu yang lebih optimal.AbstractThe Yu-Gi-Oh monster card game is a strategy game that takes turns between players by issuing the right cards to attack or defend with the aim of reducing enemy life points and protecting the player's own life points. In determining the right card to use in the game, the right information is needed in a game condition. Many players take the wrong steps in the game, so the chance of lose is greater. It need a suggestion system that is able to assist players in determining the appropriate cards to be used in the game. The suggestion system will provide input to players in determining the right and optimal card in a move. Algorithm that is able to map and determine decisions that can become a suggestion system is fuzzy with Mamdani inference. In this study, the selection of card suggestions using the Fuzzy Mamdani algorithm was repeated 15 times using processed Yu-Gi-Oh card data. The results of the accuracy of the proposed card selection model are 0.733, which means it is quite good. From these results, recommendations for further research include adding cards to the dataset such as several different card types and adding or using different methods and analysis of adding input to fuzzy variables to increase system accuracy in choosing more optimal card suggestions.
Penerapan Blok SE-NET Pada Deep Learning Inceptionv3 untuk Meningkatkan Deteksi Penyakit Mpox pada Manusia Rachman, M. Bakhara Alief; Kurniasih, Aliyah; Sundawijaya, Andika; Nuraminah, Ahlijati
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 11 No 5: Oktober 2024
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2024117978

Abstract

Mpox atau cacar monyet adalah penyakit yang disebabkan oleh virus monkeypox. Penelitian terdahulu membuktikan sudah tersedia beberapa pre-trained model yang terbukti mampu mendeteksi penyakit mpox dengan menggunakan dataset MSLD (Monkeypox Skin Lesion Dataset) seperti VGG16, ResNet50, InceptionV3, dan penggabungan ketiga model tersebut. Dari penelitian tersebut didapatkan hasil model InceptionV3 memiliki tingkat akurasi paling rendah dengan nilai 74.07% berbanding jauh dengan ResNet50 yang mampu hingga 82.96% dan menjadikannya akurasi tertinggi. Namun, terdapat peluang akurasi model InceptionV3 mampu ditingkatkan. Oleh sebab itu, pada penelitian diimplementasikan arsitektur baru dan penambahan blok SE-Net (Squeeze and Excitation Networks) pada pre-trained model InceptionV3. Untuk training dan evaluasi model akan menggunakan dataset MSLD. Penelitian ini dilaksanakan dengan harapan mampu meningkatkan akurasi pre-trained model InceptionV3 dalam mendeteksi penyakit mpox. Dari hasil penelitian berdasarkan nilai confusion matrix penerapan arsitektur baru berhasil dilakukan terbukti dengan peningkatan akurasi dari 74.07% menjadi 82.22%. Selain itu, penambahan blok SE-Net terhadap arsitektur baru terbukti mampu meningkatkan akurasi menjadi 91.11% dan menjadikan performa InceptionV3 menjadi lebih baik dari akurasi ResNet50. Dari hasil penelitian tersebut memberikan rekomendasi untuk melakukan percobaan dengan mengganti pre-trained model, blok SE-Net, dan jumlah perbandingan dataset antara train, validation, dan test.   Abstract   Mpox or monkeypox is a disease caused by the monkeypox virus. Previous research has proven that there are several pre-trained models that are proven to be able to detect mpox disease using MSLD (Monkeypox Skin Lesion Dataset) datasets such as VGG16, ResNet50, InceptionV3, and a combination of these three models. From this research, it was found that the InceptionV3 model has the lowest level of accuracy with a value of 74.07% compared to ResNet50 which is capable of up to 82.96% and makes it the highest accuracy. However, there is a chance that accuracy can be improved. Therefore, this research will apply a new architecture and SE-Net blocks to the InceptionV3 pre-trained model using the MSLD dataset. From the results of research based on the value of the confusion matrix the application of the new architecture was successfully carried out as evidenced by an increase in accuracy from 74.07% to 82.22%. In addition, the addition of the SE-Net block to the new architecture is proven to be able to increase accuracy to 91.11% and make InceptionV3's performance better than ResNet50's accuracy. The results of this study provide recommendations for conducting experiments by changing the pre-trained model, the SE-Net block, and the number of dataset comparisons between train, validation, and test.