This Author published in this journals
All Journal Eksponensial
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Optimasi Klasifikasi Batubara Berdasarkan Jenis Kalori dengan menggunakan Genetic Modified K-Nearest Neighbor (GMK-NN) Nanang Wahyudi; Sri Wahyuningsih; Fidia Deny Tisna Amijaya
EKSPONENSIAL Vol 10 No 2 (2019)
Publisher : Program Studi Statistika FMIPA Universitas Mulawarman

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (482.276 KB)

Abstract

The K-Nearest Neighbor (K-NN) method is one of the oldest and most popular Nearest Neighbor-based methods. The researchers developed several methods to improve the performance of the K-NN algorithm by using the Genetic Modified K-Nearest Neighbor (GMK-NN) algorithm. This method combines the genetic algorithm and the K-NN algorithm in determining the optimal K value used in the classification prediction. The GMK-NN algorithm will greatly facilitate the examination of coal classification in the laboratory without having to do a lot of chemical and physics testing that takes a long time only with the data already available. In this research, K value optimization is done to predict the classification of coal based on calories owned by PT Jasa Mutu Mineral Indonesia in 2017. Based on the research, using the proportion of training and testing data 90:10, 80:20 and 70:30 obtained the value of K the most optimal is at K = 1. The highest prediction accuracy was obtained by using 90:10 proportion data which is 100%, then with the proportion of 80:20 data obtained prediction accuracy of 91.67% and with the proportion of 70:30 data obtained prediction accuracy of 94.44%.