Devi Eka Wardani
Universitas Negeri Jakarta

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Perbandingan Performa Metode Berbasis Support Vector Machine untuk Penanganan Klasifikasi Multi Kelas Tidak Seimbang Qorry Meidianingsih; Devi Eka Wardani; Ellis Salsabila; Lina Nafisah; Afifah Nur Mutia
Statistika Vol. 23 No. 1 (2023): Statistika
Publisher : Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29313/statistika.v23i1.1660

Abstract

ABSTRAK Permasalahan data multi kelas tidak seimbang mulai mendapatkan perhatian dari komunitas peneliti dalam beberapa tahun terakhir. Permasalahan klasifikasi pada kasus multi kelas tidak seimbang menjadi lebih rumit karena sebagian besar teknik klasifikasi multi kelas diterapkan pada kondisi kelas yang seimbang, sedangkan dalam realisasinya data yang ditemukan lebih sering memiliki kelas tidak seimbang. Penelitian ini fokus pada membandingkan performa tiga metode klasifikasi berbasis support vector machine, yaitu SVM standar, SVM-SMOTE, dan granular support vector machines–repetitive undersampling (GSVM-RU) dimana metode dekomposisi one-versus-one (OVO) diterapkan. Terdapat tiga jenis data hasil bangkitan software R yang dirancang berdasarkan kombinasi jumlah kelas mayoritas dan minoritas yang mungkin terjadi. Hasil penelitian menunjukkan bahwa ketiga model klasifikasi menunjukkan tingkat akurasi tertinggi pada data simulasi yang memiliki perbandingan persentase antara jumlah amatan kelas mayoritas dan minoritasnya paling tinggi. Berdasarkan kriteria sensitivitas dan spesifisitas, model klasifikasi SVM standar dan SVM-SMOTE memberikan performa yang sama baiknya pada kelas mayoritas, sedangkan model klasifikasi GSVM-RU memiliki performa yang baik dalam mendeteksi kelas minoritas. ABSTRACT The problem of data with imbalances in multi-class has begun to receive attention from the research community in recent years. Classification problems in imbalanced multi-class cases become more complicated because most of the classification techniques in multi-class are applied to balanced class conditions, whereas in reality, the data found more often have unbalanced classes. This study focuses on comparing the performance of three support vector machine-based classification methods, namely standard SVM, SVM-SMOTE, and granular support vector machines–repetitive undersampling (GSVM-RU) where the one-versus-one (OVO) decomposition method is applied. There are three types of data generated by R software that are designed based on a combination of the number of possible majority and minority classes. The results showed that the three classification models showed the highest level of accuracy in the simulation data which had the highest percentage comparison between the number of observations of the majority and minority classes. Based on the sensitivity and specificity criteria, the standard SVM and SVM-SMOTE classification models provide equally good performance in the majority class, while the GSVM-RU classification model has good performance in detecting the minority class.
PCR DAN PLSR ALGORITMA NIPALS DALAM MENANGANI MULTIKOLINIERITAS PADA PREVALENSI STUNTING DI NUSA TENGGARA TIMUR NATALIE EFRATA SUSANTI; VERA MAYA SANTI; DEVI EKA WARDANI
E-Jurnal Matematika Vol. 14 No. 4 (2025)
Publisher : Mathematics Department, Faculty of Mathematics and Natural Sciences, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/MTK.2025.v14.i04.p491

Abstract

Nutritional problems contribute to 50% of deaths among children under five, particularly in low- and middle-income countries. One of the most common issues in Indonesia is stunting, a condition where a child's height falls below the standard for their age. In 2022, East Nusa Tenggara (NTT) recorded the highest stunting prevalence in Indonesia at 35.3%. However, quantitative statistical analyses of its contributing factors in NTT remain limited. This study aims to compare partial least squares regression (PLSR) using the NIPALS algorithm with principal component regression (PCR) in addressing multicollinearity. The secondary data were obtained from the 2022 Indonesian Nutrition Status Survey (SSGI), published by the Ministry of Health and BPS NTT, consisting of one response variable and ten predictor variables. Results showed that the PLSR model outperforms PCR, with an adjusted R² of 0.741 compared to 0.322. The superiority of PLSR is also evident from its lower RMSE and MAE values (2.783 and 1.910) compared to PCR (4.742 and 3.346). PLSR identified five significant predictors: average daily protein consumption per capita, number of children receiving DPT and HB immunizations, Human Development Index, percentage of households with access to safe drinking water, and number of people living in poverty.