Verencia Pricila
Institut Teknologi Sepuluh Nopember

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Penerapan Metode Peramalan Long Short Term Memory (LSTM) pada Faktor-Faktor Penyebab Badai di Indonesia Galuh Oktavia Siswono; Yeni April Lina; Verencia Pricila
Jurnal Matematika, Statistika dan Komputasi Vol. 20 No. 1 (2023): SEPTEMBER, 2023
Publisher : Department of Mathematics, Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20956/j.v20i1.27151

Abstract

Effective disaster mitigation strategies are paramount in the realm of risk management concerning natural calamities, with the primary objective of mitigating potential devastation. A pragmatic and impactful method involves predicting the contributory aspects of such disasters, encompassing variables such as torrential rainfall and formidable wind velocities that tropical cyclones bring. In this study, a comparative analysis of forecasting methodologies is undertaken, precisely the Long Short-Term Memory (LSTM) technique and the Holt Winter approach, both directed toward gauging the impact of tropical cyclones. This investigation focuses on two critical factors: the forecast of precipitation intensity and the estimation of maximum wind speed. The outcomes underscore the superior predictive capabilities of the LSTM method, unequivocally revealing its aptitude for predicting rainfall and wind speed. Impressively, the LSTM method yields remarkable precision levels of 97.433% for rainfall and an even higher accuracy of 99.018% for maximum wind speed forecasting. In essence, this study highlights LSTM's efficacy in disaster prediction with substantial accuracy.