BEKRI MURDIANTO
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

INDONESIA Pola Asosiasi Untuk Rekomendasi Penataan Display Barang Menggunakan Algoritma Apriori dan FP-Growth (Study Kasus Gamefantasia Ada Swalayan Pati) BEKRI MURDIANTO; Arief Jananto
Elkom : Jurnal Elektronika dan Komputer Vol 16 No 1 (2023): Juli : Jurnal Elektronika dan Komputer
Publisher : STEKOM PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/elkom.v16i1.999

Abstract

This data mining association processes 1224 Gamefantasia ticket redemption transaction data. The goal is to find a pattern of association between goods as a recommendation for structuring the display of goods at the cashier counter and increasing ticket exchange transactions. Modeling uses a comparison of two algorithms, namely the Apriori algorithm and FP-Growth. The data analysis method with the CRISMP-DM method is then processed by RStudio software. The results of the study with the same parameters support 0.02 and confidence 0.1 FP-Growth algorithm formed 53 rules, the strength of the association rule 6.2%, the accuracy was1245%. Whereas the Apriori algorithm forms only 12 rules, the strength of the association rules is 2.1% and the accuracy is 7.8%. Thus, it can be concluded that the use of the FP-Growth algorithm has better results than the Apriori algorithm because it has the highest accuracy in finding transaction patterns.
INDONESIA Pola Asosiasi Untuk Rekomendasi Penataan Display Barang Menggunakan Algoritma Apriori dan FP-Growth (Study Kasus Gamefantasia Ada Swalayan Pati) BEKRI MURDIANTO; Arief Jananto
Elkom : Jurnal Elektronika dan Komputer Vol 16 No 1 (2023): Juli : Jurnal Elektronika dan Komputer
Publisher : STEKOM PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/elkom.v16i1.999

Abstract

This data mining association processes 1224 Gamefantasia ticket redemption transaction data. The goal is to find a pattern of association between goods as a recommendation for structuring the display of goods at the cashier counter and increasing ticket exchange transactions. Modeling uses a comparison of two algorithms, namely the Apriori algorithm and FP-Growth. The data analysis method with the CRISMP-DM method is then processed by RStudio software. The results of the study with the same parameters support 0.02 and confidence 0.1 FP-Growth algorithm formed 53 rules, the strength of the association rule 6.2%, the accuracy was1245%. Whereas the Apriori algorithm forms only 12 rules, the strength of the association rules is 2.1% and the accuracy is 7.8%. Thus, it can be concluded that the use of the FP-Growth algorithm has better results than the Apriori algorithm because it has the highest accuracy in finding transaction patterns.